

	TOTAL PURCO	
Subject Offered Sem-V:- E Sem-VI:- F	Course outcomes paper wise for B.Sc-III Biotechnology entire for 2023- 2024	
DSC 1355E Basics in Genetic Engineering	At the end of this course students will be able to: CO 1. Understand the concept of cloning CO2. Demonstrate the techniques of DNA fingerprinting CO 3. Perceive knowledge about sequencing technology. CO 4. illustrate the importance of probe designing	
DSC 1356E Industrial Biotechnology	At the end of this course students will be able to: CO1.Construct the design required to set up industrial fermentation. CO2. Draw a contrast between industrial & pilot fermentation CO 3. Discover various ways of media formulation for industrial scale. CO 4.Predict & illustrate the nature of industrial processes.	
DSC 1357E Applications of biotechnology in Agriculture	At the end of this course students will be able to: CO 1. Outline the importance of Hybridization & mutation in crop improvement. CO2. Explain the techniques of artificial seed germination. CO 3. Discuss the strategies to develop transgenic plants CO 4.formulate biofertilizer.	
DSC 1358E Bio safety, Bioethics and Intellectual Property Rights	At the end of this course students will be able to: CO 1. Learn the concept of Bio safety CO2. Understand the mechanism of Intellectual Property Rights. CO 3. Classify different characters & functions of Bioethics. CO 4.Elaborate the process. Intellectual Property Rights	
DSC 1355F Advances in Genetic Engineering	At the end of this course students will be able to: CO 1. Reflect the importance of chemical synthesis of DNA. CO2. Differentiate various types of PCR & their applications. CO 3. Appreciate the importance of screening. CO 4.study impact of GM foods on human health.	
DSC 1356F Food & Microbial Biotechnology	At the end of this course students will be able to: CO 1. Choose appropriate fermentation technology. CO2. Compare classical & Modern fermentation techniques. CO 3. Outline the importance of preservation. CO 4.study characteristics of food supply.	
DSC 1357F Applications of biotechnology in Health	At the end of this course students will be able to: CO 1. Appreciate the exigency of stem cell technology CO2. Classify different types of vaccines CO 3.Explain the mechanism of Hybridoma technology. CO 4.Predict the nature of forensic medicines.	
DSC 1358F Bioinformatics	At the end of this course students will be able to: CO 1. Outline the importance of Human Genome Project. CO2. List different types of structural database. CO 3. Explain the importance of phylogenetic analysis. CO 4. Construct drug molecules.	

