Vivekanand College, Kolhapur (Autonomous)

B.Sc.-III

Dr. Snehal Wadkar

• **Capsule** - Some species of bacteria have a third protective covering, a capsule made up of polysaccharides (complex carbohydrates). Capsules play a number of roles, but the most important are to keep the bacterium from drying out and to protect it from phagocytosis (engulfing) by larger microorganisms. The capsule is a major virulence factor in the major disease-causing bacteria, such as *Escherichia coli* and *Streptococcus pneumoniae*. Nonencapsulated mutants of these organisms are avirulent, i.e. they don't cause disease

•Cell Envelope - The cell envelope is made up of two to three layers: the interior cytoplasmic membrane, the cell wall, and in some species of bacteria -- an outer capsule.

•Cell Wall - Each bacterium is enclosed by a rigid cell wall composed of peptidoglycan, a protein-sugar (polysaccharide) molecule. The wall gives the cell its shape and surrounds the cytoplasmic membrane, protecting it from the environment. It also helps to anchor appendages like the pili and flagella, which originate in the cytoplasm membrane and protrude through the wall to the outside. The strength of the wall is responsible for keeping the cell from bursting when there are large differences in osmotic pressure between the cytoplasm and the environment. Cell wall composition varies widely amongst bacteria and is one of the most important factors in bacterial species analysis and differentiation

• **Cytoplasm** - The cytoplasm, or protoplasm, of bacterial cells is where the functions for cell growth, metabolism, and replication are carried out. It is a gel-like matrix composed of water, enzymes, nutrients, wastes, and gases and contains cell structures such as ribosomes, a chromosome, and plasmids. The cell envelope encases the cytoplasm and all its components. Unlike the eukaryotic (true) cells, bacteria do not have a membrane enclosed nucleus. The chromosome, a single, continuous strand of DNA, is localized, but not contained, in a region of the cell called the nucleoid. All the other cellular components are scattered throughout the cytoplasm.

• **Plasmids** - are small, extrachromosomal genetic structures carried by many strains of bacteria. Like the chromosome, plasmids are made of a circular piece of DNA. Unlike the chromosome, they are not involved in reproduction. Only the chromosome has the genetic instructions for initiating and carrying out cell division, or binary fission, the primary means of reproduction in bacteria. Plasmids replicate independently of the chromosome and, while not essential for survival, appear to give bacteria a selective advantage.

• **Cytoplasmic Membrane** - A layer of phospholipids and proteins, called the cytoplasmic membrane, encloses the interior of the bacterium, regulating the flow of materials in and out of the cell. This is a structural trait bacteria share with all other living cells; a barrier that allows them to selectively interact with their environment. Membranes are highly organized and asymmetric having two sides, each side with a different surface and different functions. Membranes are also dynamic, constantly adapting to different conditions

•**Flagella** - Flagella (singular, flagellum) are hairlike structures that provide a means of locomotion for those bacteria that have them. They can be found at either or both ends of a bacterium or all over its surface. The flagella beat in a propeller-like motion to help the bacterium move toward nutrients; away from toxic chemicals; or, in the case of the photosynthetic cyanobacteria; toward the light.

•Nucleoid - The nucleoid is a region of cytoplasm where the chromosomal DNA is located. It is not a membrane bound nucleus, but simply an area of the cytoplasm where the strands of DNA are found. Most bacteria have a single, circular chromosome that is responsible for replication, although a few species do have two or more. Smaller circular auxiliary DNA strands, called plasmids, are also found in the cytoplasm.

•**Pili** - Many species of bacteria have pili (singular, pilus), small hairlike projections emerging from the outside cell surface. These outgrowths assist the bacteria in attaching to other cells and surfaces, such as teeth, intestines, and rocks. Without pili, many disease-causing bacteria lose their ability to infect because they're unable to attach to host tissue. Specialized pili are used for conjugation, during which two bacteria exchange fragments of plasmid DNA.

•<u>**Ribosomes</u>** -Ribosomes are microscopic "factories" found in all cells, including bacteria. They translate the genetic code from the molecular language of nucleic acid to that of amino acids—the building blocks of proteins. Proteins are the molecules that perform all the functions of cells and living organisms. Bacterial ribosomes are similar to those of eukaryotes, but are smaller and have a slightly different composition and molecular structure.</u>