

Vivekanand College, Kolhapur (Autonomous)

Learning Outcome Based Curriculum

F.Y. B.Sc. Computer Science With effect from June 2021

Course Structure

Paper	Name of Paper	Marks	CIE	Credits
DSC-1006A	Problem solving using Computers	70	30	04
	and Database Management System			
	Section-I Problem Solving using	35	15	02
	computers			
	Section-II Database Management	35	15	02
	System			
DSC-1006B	Problem solving using computers	70	30	04
	and Database Management System			
	Section-I Problem solving using	35	15	02
	computers			
	Section-II Database Management	35	15	02
	System			
Practical	Practicals based on DSC-1006A,	50		02
Paper -I	DSC-1006B			

B.Sc. I SEMESTER I			
Title of the	Problem solving using Computers and	Number of	
Course	Database Management System	Credits: 04	
and			
Course			
Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Learn and Understand Basics of Programming Languages and		
	Database Management Systems		
CO2	Learn and understand basics of Python Programming and		
	Concepts of Database Management System.		
CO3	Design small problems using Python Programming Language		
	and DBMS Environment.		
CO4	Solve and Analyse small problems with different problem-		
	solving techniques.		
CO5	Explain and Justify problem solving techniques and concepts		
CO6	Create simple programs and Build simple database queries		

SEMESTER I

Course: DSC-	TOPICS (Credits: 4 Lectures/Week: 5) Problem Solving using Computers & Database Management	
1006A	System-I	
	SECTION - I	
Unit I	Introduction to Programming Languages: Programming	10L
	languages-their classification and characteristics, language	
	translators and language translation activities	
	Planning the Computer Program: What is program and	
	programming paradigms Concept of problem Solving, Problem	
	definition, Program design, Debugging, Types of errors in	
	programming, Documentation.	
	Techniques of Problem Solving: Algorithms, Flowcharting,	
	Structured programming concepts, Programming methodologies	
	viz. top-down and bottom-up programming	
Unit II	Building Blocks of Program: Data, Data Types, Data Binding,	10L
	Variables, Constants, Declaration, Operations on Data such as	
	assignment, arithmetic, relational, logical or Boolean, ternary,	
	bitwise, increment or decrement operators.	
	Introduction to Python Programming: Features, Structure of a	
	Python Program (Python Shell Indentations, Comments), Python	
	Interpreter, Writing and executing simple program, Basic Data	
	Types: numbers (int, long, float, complex), strings, Declaring	
	variables, Performing assignments, arithmetic operations,	
	Sequence Control – Precedence of operators, Type conversion,	
	Simple input-output (print(), raw_input(), input())	

Unit III	Conditional Statements: if, if-else, nested if -else Looping: for, while, nested loops, else clause with while and for loop Control statements: Terminating loops, skipping specific conditions (break, continue, pass) Numeric Functions: abs(), ceil(), floor(), max(), min(), pow(), sqrt() String Manipulation: Declaring strings, String immutability, unicode string (u'String'), escape sequences (\), Operations on String (Concatenation (+), Repetition (*), Slicing ([index]), Range Slicing([start:end] or [:end] or [start:], Member ship operator (in, not in)), String Functions : capitalize(), len(), lower(), swapcase(), upper()	
	SECTION II	
Unit I	Introduction to DBMS: Introduction of DBMS – Database, DBMS – Definition, Overview of DBMS, File processing system vs DBMS, Limitation of file processing system, Advantages of DBMS, Levels of abstraction, Data independence, DBMS Architecture, Users of DBMS, Data models – Object Based Logical Model, Record Based Logical Model (relational, hierarchical, network)	10 L
Unit II	Entity Relationship Model - Entities, attributes, entity sets, relations, relationship sets, Additional constraints (key constraints, participation constraints, weak entities, aggregation / generalization, Conceptual Design using ER (entities VS attributes, Entity Vs relationship, binary Vs ternary, constraints beyond ER), Entity Relationship Diagram (ERD)	10 L

Unit III	MySQL -	18 L
	DDL Statements - Creating Databases, Using Databases,	
	MySQL datatypes, Creating Tables (with integrity constraints –	
	primary key, default, check, not null), Altering Tables, Renaming	
	Tables, Dropping Tables, Truncating Tables, Backing Up and	
	Restoring databases	
	DML Statements – Viewing the structure of a table insert,	
	update, delete, select – all columns, specific columns, unique	
	records, conditional select, in clause, between clause, limit,	
	aggregate functions (count, min, max, avg, sum), group by clause,	
	having clause.	
	Functions – String Functions (concat, instr, left, right, mid,	
	length, lcase/lower, ucase/upper, replace, strcmp, trim, ltrim,	
	rtrim), Math Functions (abs, ceil, floor, mod, pow, sqrt, round,	
	truncate) Date Functions (adddate, datediff, day, month, year,	
	hour, min, sec, now, reverse)	
	DCL Statements (creating/dropping users, privileges	
	introduction, granting/revoking privileges, viewing privileges)	

B.Sc. I SEMESTER II			
Title of the	Problem solving using Computers and	Number of	
Course and	Database Management System	Credits: 04	
Course			
Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Learn and understand the related and extended concepts of		
	Python Programming and Database Management S	System	
CO2	Design complex problems using Python Programming Language		
	and DBMS Environment.		
CO3	Recognize and identify the different concepts available in		
	Python programming and DBMS		
CO4	Solve and Analyze complex problems with different problem-		
	solving techniques.		
CO5	Explain and Justify problem solving techniques and concepts		
CO6	Formulate, Construct and Demonstrate case studies.		

SEMESTER II

Course : DSC- 1006B	TOPICS (Credits : 4 Lectures/Week: 5) Problem Solving using Computers & Database Management System-II		
	SECTION - I		
Unit I	Lists: Creating a list, Displaying list(print()), Basic Operation (Length (len()), Concatenation(+), Repetition(*), Membership (in, not in), Iteration (for var in list), Slicing, Updating(=) and deleting(del) element of a list. Compare (cmp()), Maximum(max()) and minimum (min())), List Methods (Append (list.append()), Count (list.count()), Insert object (list.insert()), Remove (list.remove(), list.pop()), Reverse (list.reverse())) Tuples (sequence of immutable objects): Creating tuples(using () brackets) and Deleting tuple(del), empty tuple, Displaying(print()), Basic Operation (Length (len()), Concatenation(+), Repetition(*), Membership (in, not in), Iteration (for var in list), Slicing, Updating(=) and deleting(del) element of a list, Compare (cmp()), Maximum(max()) and minimum (min()))	10 L	
Unit II	Dictionaries — Concept of dictionary, Creating Dictionary ({Key:Value,}), Values are mutable objects but keys are immutable object, Properties of Dictionary keys, Basic Operation(Length (len()), Compare (cmp())), Dictionary Methods(Clear (dict.clear())), Existance of Key (dict.has_key()), List of dictionaries tuple pairs (dict.items()), List of keys (dict.keys()), Add dictionary (dict.update()), Dictionary Values (dict.values())) Functions: Defining Functions (def, name, arguments, function suite, return statement), calling a function, Pass arguments by value or by reference (using list), Advantages of functions, types of functions, function parameters (required, keyword, default), anonymous functions or ternary operator(lambda), Scope of a variable (global and local)		

Unit III	Modules: Importing module, Creating & exploring modules, Math	10L
	module, Random module, Time module, rules of locating module,	
	namespace and scope (local and global)	
	Python File Input-Output: Opening and closing file, Various types	
	of file modes, reading and writing to files	
	SECTION II	
Unit I	Relational data model— Domains, attributes, Tuples and Relations,	10 L
	Relational Model Notation, Characteristics of Relations, Relational	
	Constraints - primary key, referential integrity, unique constraint, Null	
	constraint, Check constraint	
Unit II	ER to The Relational Model - Entity to Table, Relationship to tables	10 L
	with and without key constraints.	
	Introduction to Functional Dependencies and Normalization –	
	1NF, 2NF, 3NF	
	Relational Algebra operations (selection, projection, set operations	
	union, intersection, difference, cross product, Joins -conditional, equi	
	join and natural joins, division)	
Unit III	MySQL Joining Tables – inner join, outer join (left outer, right outer,	18 L
	full outer)	
	Subqueries – sub queries with IN, EXISTS, sub queries restrictions,	
	Nested sub queries, ANY/ALL clause, correlated sub queries	
	Database Protection: Security Issues, Threats to Databases, Security	
	Mechanisms, Role of DBA, Discretionary Access Control	
	MySQL - Stored functions, procedures, cursor, trigger, views	
	(creating, altering dropping, renaming and manipulating views)	

Text books:

- 1) Charles Dierbach, Introduction to Computer Science using Python, Wiley, 2013
- 2) James Payne, Beginning Python: Using Python 2.6 and Python 3, Wiley India, 2010
- 3) Paul Gries , Jennifer Campbell, Jason Montojo, *Practical Programming: An Introduction to Computer Science Using Python 3*, Pragmatic Bookshelf, 2/E 2014
- 4) Ramez Elmasri & Shamkant B. Navathe, *Fundamentals of Database Systems*, Pearson Education, Sixth Edition, 2010.
- 5) Joel Murach, Murach's MySQL, Murach, 2012

Additional References:

- 1) Adesh Pandey, Programming Languages Principles and Paradigms, Narosa, 2008
- 2) Lukaszewski, MySQL for Python: Database Access Made Easy, Pact Publisher, 2010
- 3) Robert Sheldon, Geoff Moes, *Begning MySQL*, Wrox Press, 2005.
- 4) Ramakrishnam, Gehrke, Database Management Systems, McGraw-Hill, 2007

Semester I & II PRACTICALS

DSC- 1006B-PR	Practicals on DSC1006A & DSC1006B (Credits: 2, Pract/Week: 4 Hrs)		
	Python Programming		
	(1) Using the Operating system (logging, creating – deleting folders, creating-deleting files, using editors etc.)		
	(2) Installing python and setting up environment. Simple statements like printing the names, numbers, mathematical calculations, etc.		
	(3) Simple programs containing variable declaration and arithmetic operations		
	(4) Programs based on conditional constructs		
	(5) Programs based on loops		
	(6) Programs related to string manipulation		
	(7) Programs related to Lists, Tuples		
	(8) Programs related to dictionaries		
	(9) Programs to create user defined functions.		
	(10) Programs to read & write file		

Introduction to Database Management Systems

(1) Practical No. 1

- Viewing all databases
- Creating a Database
- Viewing all Tables in a Database
- Creating Tables (With and Without Constraints)
- Inserting/Updating/Deleting Records in a Table
- Saving (Commit) and Undoing (rollback)

(2) Practical No. 2

- Altering a Table
- Dropping/Truncating/Renaming Tables
- Backing up / Restoring a Database

(3) Practical No. 3

- Simple Queries
- SIMPLE Queries with Aggregate functions
- Queries with Aggregate functions (group by and having clause)

(4) Practical No. 4

- Queries involving
- Date Functions
- String Functions
- Math Functions

(On previously created tables and/or the dual table)

(5) Practical No. 5

- Creating a savepoint
- Commit & Roll back
- Granting and revoking permissions

(6) Practical No. 6

- Join Queries
 - o Using 2 related tables
 - More than 2 related tables

(7) Practical No. 7

Sub Queries