ELECTRONICS-DSC -1005 D Semester: IV Electronics-
Paper- IV Advance Communication and
Microcontroller 8051
Section II: Microcontroller 8051

Unit 2: Instruction Set of 8051
Classification of instruction sets, Addressing modes .
Instruction set of 8051: data transfer, arithmetic, Logical, Jump, call,

Boolean instructions.

Addressing modes:-

The ways to specify the address of data in instruction is called
addressing modes. The data could be in a register, or in memory, or be
provided as an immediate value. There are four addressing modes.

1) Immediate addressing mode

2) Direct addressing mode

3) Register addressing modes

4) Indirect addressing modes (indirect register addressing mode)

5) Indexed addressing mode

Immediate addressing mode:-
In this instruction data is directly written in the instruction. i.e. data is a part of instruction.

1)MOV A, #data (MOV A, #55)— copy specified data into accumulator.
2)MOV Rn, #data(MOV RO0,#22H)—copy specified data into Register(R0-R7).
3)ADD A, #data— Adds the specified data with content of accumulator.
4)SUBB A, #data— Subtract the specified data with the content of accumulator.
5)ORL A, #data— The specified data is ORed with the content of accumulator.

6)MOV DPTR,#16bit data— Copy the 16-bit data into DPTR. e.g. MOV DPTR, #9006.

Direct Addressing mode:-
All 128 bytes of internal RAM & SFR'S can be addressed using assigned values. In this instruction, the address of

operands are directly specified.

1)MOV A, add— Copy data from location specified by given address into Accumulator.

A)MOV A, 80H ;Read the content of port PO(add 80H) & copy them into Acc.

B)MOV 80H, A ;write into port PO.

C)MOV PSW, A (move DO,EQ); Move the content of Acc. Into flags.
2)MOV Rn, add— Copy data from locations specified by given address into register Rn.

e.g.MOV R2,12H ; copy data from location specified by 12h into R2.

3)Add Address— Adds the data from the location specified by given address with the content of accumulator.
4)XCH A, Address— Exchange the data from the location specified by given address with the content of accumulator.

5)XRL A, address— The data from the location specified by given address is XORed with the content of accumulator.

Register Addressing mode:-

In register addressing mode, the register A(accumulator), R0O-R7 are specified in the instruction itself.

(RO-R7) are used in currently selected bank.

e.g.

1)MOV A, RO; Move data from register RO to A A«R If RO=55H then A=55H

2)MOV A, Rn : A—Rn.
3)ADD A, Rn ; Adds the content of register Rn with Accumulator.

4)SUBB A, Rn; Subtracts the contents of register Rn from Acc with Borrow.

5)XRLA, Rn ; The contents of register Rn are XOred with accumulator content.
6)XCHA, Rn ; The content of register Rn & Acc are exchanged.

7)ANL A, Rn ; The content of register Rn are ANDed with accumulator.

8)ADDC A, Rn; The content of Rn are added into Accumulator with carry movement of

data between register. Rn is not allowed i.e. MOV R5, R6 is not valid (only RO,R1 are used as pointer

register)

Indirect (Register)addressing mode:-

In this addressing mode, register is used to hold the actual address of operand or data. The register itself
IS not the address. These instructions uses RO, R1 as data pointer and register, but R2-R7 are not allowed
to hold address.

1)MOV A, @Ro ; Move to accumulator content of memory location pointed by reg. RO

2)MOV @R1, A; move the content of the accumulator into memory location pointed by register R1.
3)ADD A,@RO0; Adds the content of memory location pointed b register RO with content of accumulator
4)SUB A,@R1; Subtracts the content of memory location pointed out by register R1 from contents of
accumulator.

5)INC @RO; increment the contents of memory location pointed out by register RO.

6)DEC @R1;Decrement the contents of memory location pointed by regsiter.

7)ANL A,@R; The content of memory location pointed out by reg R1 is ANDed with content of
accumulator. But, MOV A,@R3;This is not valid.

Indexed addressing mode(External addressing mode):-

It is widely used in accessing data elements of look-up table entries located in the program
ROM.

*MOVC A, @A+DPTR : Here MOVC, “C” means code. The contents of A are added to the
16-bit register DPTR to form the 16-bit address from which data is copied into A.

*MOVC A,@A+PC : The contents of A are added to the 16-bit register PC to form the 16-bit

address from which data is copied into A.

2.1 Addressing modes

When controller executes an instruction, it perform the
specific function on data. The different ways to specify the
address of data In an instruction are called as addressing
modes.

2.1.1 Types of Addressing Modes

Direct addressing mode

*Register Indirect addressing mode
*Register addressing mode
Immediate addressing mode
*Indexed / External addressing mode

Direct addressing mode

In this mode the operand is specified by an 8 bit
address field in the instruction .Internal RAM and all
SFRs can be accessed by direct addressing mode. The
Internal memory address from 00H to 7FH and the SFRs
can access from 80H to FFH

e.g. MOV A, 60H ; copy the content of memory location 60H
to register A

*Register Indirect addressing mode

In this addressing mode, the Instruction
specifies the register which contains the address of an
operand. The registers from the register bank are used as a
memory pointer . The @ sign indicated the register acts as a

pointer to memory location. Only RO and R1 registers are used as
pointers for selected bank.

e.g. MOV A @RO ; copy the content of the memory location whose
address id pointed by register RO

» Register addressing mode

In this addressing mode the operand Is copied from
one register to another register. In this addressing mode both
source and destination are registers.

e.g. MOV A, RO ; copy the content of RO to register A

Immediate addressing mode

This method Is the simplest method to transfer a data.
In this addressing mode the operand/data Is the part of
Instruction. The # sign indicates that the data followed
Immediate by operand.

e.g. MOV A #20H , copy the immediate data to
register A
Indexed/External addressing mode
Using this addressing mode only external program memory
can be accessed. This addressing mode Is used to read the
lookup table. Either the DPTR or PC is used as a memory
pointer.

e.g. MOVC A @A+DPTR ; copy the content of
memory location to register A pointed by DPTR register

The 8051 Instruction set 1s divided into different
groups

Data Transfer Instructions
Arithmetic Instructions

Logical Instructions

Bit Processing Instructions
Program Branching Instructions

ARl S

1. Data Transfer Instructions

2.2Data Transfer Instructions

The microcontroller spends its most of the time in coping the data_one to another. So 8031 instruction set is full of data movement instru

MOV Rn.#data

Mnemonic | Operation Addressing | Number of Example Description
mode bytes
MOVAR: |R A Register 1 MOV A RI Copy the data from Rl. of the ?El&tt&&f
5 register bank and store it to register A
MOV A ditect | Addr — A Direct 5 MOV A, 60H Copy the data from specified address i.c.
60H and store it to register A
Copy the data from the address specifi d
MOV A.@Rn | Addi(Rn}» A Indirect 1 MOV A ,@R1 | within R1 of the selected register bank
and store it to register A
MOV A #data | Datams A Immediate | 2 | MOV A 3o | Copy the data immediate data Spe‘”f“d
: within instruction to register A
| . Copy the datafrom register A to register
/ /
MOVRa.A 1A — Ra Register : MOVR7 A R7 of the selected register bank
. Copy the data from specified address i.e
/ /
MOV Ra,direct Addr = Rn Direct | 2 MOV RI.30H 30H and store it to R1 of the se ected
register bank
Copy the data immediate data specifi ed
Data=+ Rn Immediate 1 MOV R5,#20H

within instruction to register RS of '[hE
sel&cted register baﬂk '

Copy the content of the register A to the
address specified within the instruction

MOV direct A |A =+ addr Direct 2 MOV T70H.A |.
i.e. T0H
Copy the content of the register R2 of
7 di 7 2 '
MOV direct,Rn Addr = Rn Direct) MOV 30H.R2 theslﬁrlected.re.g1sterl:{ank tﬂlthe.address
specified within the instruction i.e. 30H
MOV Copy the content of the memory location
direct.direct | Addr =+ Addr Direct 3 MOV 30H,60H | 60H to the memory address 30H
Copy the content of the memory
MOV direct addresses specified in the register R0 of
~ Register , MOV 30H ,@R0 | the selected register bank to the memory
@Rn Addr(Raj= addr indirect - address 30H
MOV direct .2 Copy the immediate data 30H to the
data Data ==+ addr Immediate 3 MOV 20H ,# 30H | memory address 20H
A —> Addr Copy the content of register A to the
MOV @Rn,A Rn) Register 1 MOV @R3.,A | addresses specified within R3 of the
selected register bank.
: Copy the content of memory location
MOV @Rn,direct I(i":{l;m_' Adds Direct 2 MOV @R7.30H | 30H to the address specified withinR7 of

the selected register bank.

Copy the immediate data to the memory

éMO\f" @Rn.zdata | Data==» addr | Immediate 2 MOV @R5,240H | location specified within register RS of
the selected register bank.
MoV MOV Copy the immediate data to the 7000h to
EDPTRii:tiata 16 |Data =+ DPTR | Immediate 3 DPTR £7000H the DPTR

Add the content of the register A and
- MOVC . MOVC DPTR to generate address. copy the
A@ADPTR (A*DPTR) =+ A Indirect 1 A,@A+DPTR | content of generated address to the
register A

Copy the content of the address specified

MOVX . MOVX i .
A@DPTR addr(DPTR=+ A | Indirect 1 A@DPTR within DPTR to the register A
MOVX A == addr Indirect | MOVX Copy the content of register A to the
@DPTR,A | (DPTR) @DPTR,A | address specified in DPTR

Copy the content of register A to the
MOVX@Rn.A |A = addr(Rn) | Indirect 1 MOVX @R0,A | address specified in RO of the selected
register bank
dir—s P Copy the content of DPTR higher byte tc
- PUSH direct $P=SP-1 Direct 2 PUSH DPH | the memory location pointed by the stack
pointer
Copy the content of the memory location
- POP direct | SP = Direct Direct 2 POP DPH | pointed by stack pointer to DPTR highes

byte

XCHA Rn

Exchange the data between register A

AZ Rn Register 1 XCH AR5 | and register RS of the selected register
bank
XCH A .direct Exchange the data between register A
Elddf: Rn Direct 2 XCH A50H |and the specified address within the
instruction i.e. 50H
XCHA .@Rn Regist Exchange the data between register A
A = addr(Rn) Tesistet 1 XCH A.@R5H |and the address specified within RS
indirect = :)
register of the selected register bank.
A(3-0r =2 Exchange the lower nibble of data
addr(Rn)(3-0) Register between register A and the address
XCHD A ,@Rn 2 1 XCHD A.@RS5H | specified within RS register of

indirect

2. Arithmetic Instructions

Mnemonic

Operation

Addressing
mode

Number
of Bytes

Example

Description

ADD ARn

Fegister

1

ADD AR5

The content of register A added with content of
register R5 of the selected register bank and
result is stored in register A

ADD A, direct

A+addr — A

Direct

]

ADD A20H

The content of register A is added with content
of memorv location specified within instruction
i.e. 20H and result is stored in register A

ADD A, @Rn

A+ addrRn) — A

indirect

ADD A . @PRoO

The content of register A is added with content
of memorv location specified within register R0
of the selected register bank and result is
stored in register A

ADD A, #data

A+ data —e A

Immediate

]

ADD A #30H

The content of register A is added with
immediate data and result is stored in
register A

ADDC AFEn

A+Rnt+CY —p A

Eegister

ADDC AR5

The content of register A is added with content
of register R3> of the selected register bank:

e

and a carrv bit. The result is stored in register

A

ADDC A_
direct

A+addrtCY — A

Direct

]

ADDC AZ20H

The content of register A is added with content
of memory location specified within instruction;
ie. 20H and a carry bit. The result is stored in
register A

ADDC A,
@Fn

oy

A+addrRnCY — A

indirect

ADDC A @RO

The content of register A is added with content
of memorv location specified within register R0
of the selected register bank and a camrv bit.
The resultis stored in register A

Mnemonic

Operation

Addressing
mode

Number
of Bytes

Example

Description

SUBB A R

ARnCY = A

Register

SUBB AR)

The content of register R and a cany flag are
subtracted from the content of register A. ThE
result is stored I register A |

SUBB A, diec

A-addrCY - A

Direct

| e

SUBB A.20H

The content of memory location and a camﬁ

flag are subtracted from the content of reglster
A The resultis stored in register A

SUBB A, @R

A-2ddiRu)}CY —p A

Indirect

SUBB A,@R0

The content of memory location whose addr&ss'

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

from the content of reglster A. The result 15
stored n register A |

SUBB A, 442

A-dataCY=p A

[mmediate

SUBB Az3(H

The mmediate data and 2 cany flag are aré

subtracted from the content of register A. ThE-
result is stored mn register A

1

EKEEIltlDIl of these Instructions.

2 3.3, Increment : The increment is performed using instruction INC The operand value is 1ncrem&nted by one. flags are not aff&cted upon thE

. . Addressing | Number .

Mnemonic Operation node of Bytes Example Description :
INC Ru Rul— Ro Register 1 INC R6 3;111: content of register R6 is incremented bv

INC direct addr+l —s addr Direct) INC 30H The content of memorv location 15

incremented by one .

. The content of memory location whose address

INC @Rn | addRa)*] —» addhRp) | Indivect : INC @R0 is stored n R0 is incremented bv one

INC DPTR DPTR:1 — DPTR Register 1 INC DPTR The content of register DPTR is 1ncrementedl

by one

p 3.4. Decrement : The decrement is performed using mstruction DEC. The operand value is incremented by one. flags are not affected

g.lpnn the execution of these instructions.

. . Addressing | Number o

Mnemonic Operation node of Bytes Example Description |
DEC Rn Rnl = Ru Register I DEC R6 311: content of register R6 is decremented bv

DEC direct addr-l - adds Direct) DEC 30H The content of memory location 15

decremented by one |

. The content of memory location whose address

DEC @Rn | addrRn)-1 —p2ddrRn) | Indirect 1 DEC @R0 is stored in RO is decremented by one

DEC DPTR DPTR.! — DPTR Register | DEC DPTR The content of register DPTR 1s der:rementedl

bv one

1.3.3. Multiplication:

The 8051 microcontroller has a capability of § bit multiplication using register A and B. For multiplication register A and B act as

snu.rce as well as destination. In & bit multiplication 16 bit result is generated. The higher bvteis stored inregister B and lower byte is stored | 1n

reglster A_The over flow flag (OV) flag is set if result of the grater than FFh.

Addressing | Number -

Mnemonic Operation node of Bytes Example Description E
The content with in register A and B are
~ MUL AB | AXB =+ A(0-7)B(0-7) | Register 1 MUL AB

multiplied ad the result is stored in A and B

registers.

236, Division ;

8051 microcontroller can perform 8 bit division. the content of register Ais divided by the content of register B. After division quotientis stored

in register A and remainder stored n register B over flow (OV) flag 1s set if the content 1s divided bv zero.

. . Addressing | Number -
Mnemonic Operation node of Btes Example Description
. , The content of register A is divided by content
DIV AR | 47D Aot | poger |1 DIV AB | of register B. and the result is stored in A and

B (remainder)

B registers.

2.3.7. Decimal Arithmetic

58[351 can perform the BCD arithmetic addition. Using DA A instruction the result within register A is converted into BCD numbers.

. . Addressing | Number -
Mnemonic Operation node of Bytes Example Description |
DA A A=s A(BCD) Register | DA A The content of register A is converted 1111:0;

specific

equivalent BCD numbers

3. Logical Instructions :

content of register A. The result i 15
stored In register A -

Mnemonic Operation Adful:;:mg :;I][;; bt: Example Description
The content of register R4 is ANDed with the
ANL A.Rn | A(ANDedRn —s A | Register 1 ANL A R4 | content of register A. The result is stored in
register A
The content of memory location 20H ANDed
ANL A, direct | A(ANDed)addr =+ A | Direct 2 ANL A 20H |with content of register A. The result is
stored In register A
The content of memory location whose address
ANL A, @Rn | A(ANDed)addr(Rn)j=spA | Indirect 1 ANL A @R5 |isstoredin RS ANDed with the content of
register A. The result is stored in register A
, , , The immediate data ANDed with the content
;ANL A.wdaa | A(BNDed) data— A | Immediate ’ ANL A, #I0H of register A. The result is stored in register A!
The content of memory location J0H ANDed
EANL direct A | A(ANDed)addr ==»addr | Direct 2 ANL 20HA |with content of register A The result | 15:
stored at memory location 20H |
ANL The content of memory location M
- direct & A(ANDed)data ==»addr | Immediate 3 ANL 20Hz40H | with data 40H. The result is stored atmemnrv
. direct #data
| location 20H
The content of register R4 1s ORed with the
ORL ARn A(ORed)Rn = A Register 1 ORL A R4 | content of register A. The result is stored 1 lIL
register A |
The content of memory location 20H DREd
ORL A, direct | A(QRed)addr = A Direct 2 ORL A, 20H |with

ORL A, @R

The content of memory location whose address
is stored in R3 ORed with the content of

AQRedaddrR)—wA Indirect l ORL A. @R register A. The result is stored in register A

| The immediate data 10H ~ ORed with the
ORL A #data | A(QRed)detz —» A | lnmediote | 2 | ORL A, #10H f:;:g;f register A. The - result s stored in
The content of memory location 20H DREd:
ORL direct A | A(ORed)addr —p addr Direct 2 ORL 20HA |with content of register A. The result is is
stored at memory location 20H '
 ORL The content of memory location 20H DREd:
direct £ A(ORed)data =——paddr | Immediate 3 ORL 20H#40H | with data 40H.The result is stored at memnrv
. direct #data R

| location 20H
The content of register R4 is XORed with the
XRL ARn | A(XORed)Rn = A Register] XRL A R4 | content of register A. The result is stored i lIL
register A |
The content of memory location 20H M
XRL A, direct | A(XORed)addr =» A Direct 2 XRL A, 20H |with content of register A. The result is
stored in register A .
The content of memory location whose address
XRL A, @Rn | A(XORed)addr(Rn)==p A | Indirect] XRL A, @RS |isstored n RS XORed with the content nf:
register A. The result is stored in register A |
; The immediate data 10H ~ XORed with the
XRL A #data | A(XORed)datams A | Immediate) XRL A £10H content of register A. The result is stored i IIL.

register A

The content of memory location 20H XOER.ed

XRL direct A | A(XORed)addr == addr Direct 2 XRL 20HA | with content of register A. The result is
stored at memory location 20H
XRL The content of memory location 20H XOER.ed
direct 2dat A(XORed)data = addr | Immediate 3 XRL 20H.#40H | with data 40H. The result is stored at memory
SRS location 20H
: This instruction clears the content of register A
CLR A A=) Register I CLRA
specific
CPL A A=K Register i CPL A This instruction will compliments the content
specific of register A
Res This instruction will shift the content of register
RLA Avi=As N 1 RLA | Atoleft by onebit
specific
This instruction will shift the content of register
Aptl = Ap . A to left by one bit through carry.
RLC A Ao = CY f;féft‘ilf I RL A
A; = (CY
Resist This instruction will shift the content of register
RR A Ap =>Ag S;féfﬂf 1 RLA A to left by one bit
Ap = Ap Reg This instruction will shift the content of register
RLC A CY = Ag csister 1 RLA A to left by one bit through carry.
CY = A specific
Resist This instruction exchange the lower nibble and
SWAP A A03) =A@ e 1 SWAPA | higher nibble of register A

specific

4. Bit Manipulation Instructions

25 Bit Manipulation Instructions

Number of

é.‘sInemunic Operation Addressing mode Butes Example Description
CIR Bit Bit=0 Register/ direct if | for) CIR P23 Clear the bit P2.3
operated on camy bit
SETR Bt Bit=1 Register/ direct if | lor) SETB P10 Set the bit P1.0
operated on carry bit
Compliment the bit P3.1
CPLBit | Bit=Bu Regater drectif |-y CPL31
operated on carry bit
; This instruction will perform lc:gir:a]lﬂvé
ANLCBit | CY(ANDedBit = CY Direct)| anLcAccs |4NPing of cany bit and the bit
L i "7 | specified within instruction. The result
is stored in the camry bit |
; This instruction will perfom logically
. . . . ORing of camry bit and the bit sper:lfied
DRL GBit| CYORedBI =LY Direct i ORLCACCT within istruction. The result is stored in
| the carry bit
;MDV Bit C OV — Bi Digect) MOV ACC2.C The camry bit is copied on register A blt%
T number two -
MD‘U CBit Bit = CY Direct) MOV C ACC.1 The register A bit number 1 copied m.

the carry bit

Single bit Jump Instructions

addressing

No.of

target

Mnemonics operation mode bytes Example Description
JB bit, rel address {Z:;'gtto Direct | 3 B PL5, HERE [jump if bit P15 is set
JNB bit,rel address {Z:ggtto Direct 3 \IJ\INEI?(,?CC.O, jump if bit ACC.0 not set
JBC bit. rel addressiz:ggtto Direct 3 \II\IBEC;?CC.?, {:l:(g) ti)fitbitACCJi::, set and
JC, rel address {Z:ggtto Direct 3 JCNEXT Jump if Carry is set
JNC, rel address jump to Direct 3 JNC NEXT Jump if Carry not set

BOOLEAN VARIABLE MANIPULATION

CLR
CLR
SETB
SETB
CPL
CPL
ANL
ANL
ORL
ORL
MOV
MOV
JC
JNC
JB

JNB
JBC

C

bit

C

bit

C

bit
C,bit
C,/bit
Cbit
C,/bit
C,bit
bit,C
rel

rel

rel
rel
Dit rel

Clear carry

Clear direct bit

Set carry

Set direct bit

Complement carry

Complement direct bit

AND direct bit to carry

AND complement of direct bit to carry
OR direct bit to carry

OR complement of direct bit to carry
Move direct bit to carry

Move carry to direct bit

Jump if carry is set

Jump if carry not set

Jump if direct bit Is st
Jump if direct bit is not set

Jump if direct bit is set and clear bit

L e e e e e L e e | N

5. Program Branching Instructions:

Branching instructions are classified into the two
groups:

1. Jump instructions

2. Subroutine instructions

Jump instructions

a. Short relative jump
b. Absolute jump

c. Long jump

Short relative jump

Instruction | Description Conditions for jump

SJIMP Unconditional short jump e.g. SIMP here -

JC Jump if carry e.g JC here CY=1

JNC Jump if not carry e.g JNC here CY=0

JZ Jump if zero e.g JZ here A=0

INZ Jump if not zero JBC P1.5, here A#)

JB Jump if bite.g JB P1.5, here Bit =1

JNB Jump if not bit e.g JNB P1.5, here Bit=0

JBC Jump if bit and clear the bit e.g JBC P1.5, here Bit=1

CINE compares the first two operands and jumps to the specified | SFR or direct or
destination if their values are not equal. If the values are | indirect address
the same, execution continues next instruction. becomes equal
e.g. CINE A #25H, here

DINZ decrements the byte indicated by the first operand and, if | SFR or immediate
the resulting value 1s not zero, jumps to the address | data or direct or
specified in the second operand. indirect address

e.g. DJNZ RO, here

becomes zero

Absolute jump:

AJMP <11 bit address>

The Absolute jump is two byte unconditional jump. It jumps within page of 2K byte. In
8051, 64 Kbyte of program memory space is divided into 32 pages of 2Kbyte each.

Long Jump : (long jump)

LJIMP <16 bit address>

It is used to access the entire program memory from O000H to FFFFH. It is a 3-byte
instruction (except for IMP @ A+DPTR). First byte is the op-code and second and third
bytes represent the 16-bit target address which is any memory location from 0000 to
FFFFH. eg: LIMP 7000H

Subroutine Instructions

In the 8051 a subroutines are handled by CALL and RET instructions. The main
difference between CALL and JUMP instructions is that CALL has return path and jump
has no return path. When CALL instructions are executed then the content of the PC
pointed to the next of the CALL is stored into the stack pointer. During RET instructions
it is loaded into the PC.

There are two types of CALL instructions

a. Absolute call : ACALL

b. Long call : LCALL

Absolute call

ACALL <11 bit address>

The Absolute CALL is two byte call instruction. It call within page of 2K byte. In 8051, 64
Kbyte of program memory space is divided into 32 pages of 2Kbyte each.

Long CALL

LCALL <16 bit address>

This is long call instruction which unconditionally calls the subroutine located at the
indicated 16 bit address. This is a 3 byte instruction. No flags are affected. e.g.
LCALL 7000H

RET instruction

A RET instruction pops top two content from the stack memory and loaded into PC.
After execution of RET instruction a main program is executed. e.g. RET

Jump on bit conditions

Compare bytes and jump if not equal
Decrement byte and jump tf zero
Jump unconditionally

Call a subroutine
Return from a subroutine

Jump Instruction Ranges
Memory Address (HEX)

FFFF

Next Page

PC + 127d

PC

PC — 128d

This Page

Q000

LADD Limit

|

SADD Limit

Relative Limit

Next Opcode

JC
JNC
JB
JNB
JBC

Bit
Jumps

»
L™
2
T

Jump Opcode

Relative Limit

SADD Limit

R

CINE
DINZ
Jz
JNZ

SIMP

Byte
Jumps

R R

\\

LADD Limit

e e e e e e e e e e e s o e e e e o e o e o]

C
2
3

Bit Jumps

Mnemonic ~ Operation

JCradd Jump relative if the carry flag is setto |

INCradd Jump relative if the carry flag is reset to

JBbradd Jump relative if addressable bit is set to |

INB b,radd Jump relative if addressable bit s reset to 0

JBC byradd Jump relative if addressable bit is set, and clear the addressable bit to

ADDRESS
LOOP:

ADDA -

MNEMONIC

MOV A, #10h
MOV RO, A
ADD A, RO
JNC ADDA

COMMENT

A = 10h

;R0 = 10h

;add RO to A

;if the carry flag is 0, then no carry is
ctrue; jump to address ADDA; jump until A
'is FOh; the C flag is set to

'1 on the next ADD and no carry is

' false; do the next instruction

Mnemonic
CINE A ,add,radd

CINE A,#n,radd

CINE Rn,#n,radd

CINE @Rp,#n,radd

Byte Jumps

Operation

Compare the contents of the A register with the contents of the
direct address; if they are not equal, then jump to the relative
address; set the carry flag to 1 if A is less than the contents
of the direct address; otherwise, set the carry flag to 0

Compare the contents of the A register with the immediate
number n; if they are not equal, then jump to the relative
address; set the carry flag to | if A is less than the number;
otherwise, set the carry flag to 0

Compare the contents of register Rn with the immediate
number n; if they are not equal, then jump to the relative
address; set the carry flag to 1 if Rn is less than the number;
otherwise, set the carry flag to 0

Compare the contents of the address contained in register Rp
to the number n; if they are not equal, then jump to the
relative address; set the carry flag to 1 if the contents of the
address in Rp are less than the number; otherwise, set the
carry flag to O '

DINZ Rn,radd

DINZ add,radd

JZ radd

INZ radd

Decrement register Rn by 1 and jump to the relative address if
the result is not zero; no flags are affected

Decrement the direct address by | and jump to the relative
address if the result is not 0; no flags are affected unless the
direct address is the PSW

Jump to the relative address if A is 0; the flags and the A

register are not changed
Jump to the relative address if A is not 0; the flags and the A

register are not changed

Mnemonic
IMP @A+ DPTR

AJMP sadd
LIMP ladd
SIMP radd

NOP

Unconditional Jumps

Operation

Jump to the address formed by adding A to the DPTR; this is an
unconditional jump and will always be done; the address can
be anywhere in program memory; A, the DPTR, and the flags
are unchanged

Jump to absolute short range address sadd; this is an unconditional
jump and is always taken; no flags are affected

Jump to absolute long range address ladd; this is an unconditional
jump and is always taken; no flags are affected

Jump to relative address radd; this is an unconditional jump and
1s always taken; no flags are affected

Do nothing and go to the next instruction; NOP (no operation) is
used to waste time in a software timing loop; or to leave room
in a program for later additions; no flags are affected

Calls and Returns

Mnemonic Operation

ACALL sadd Call the subroutine located on the same page as the address of the
opcode immediately following the ACALL instruction; push the
address of the instruction immediately after the call on the stack

LCALL ladd Call the subroutine located anywhere in program memory space; push
the address of the instruction immediately following the call on

the stack
RET Pop two bytes from the stack into the program counter
RETI Pop two bytes from the stack into the program counter and reset the

interrupt enable flip-flops

8051 conditional jump instructions

Instructions Actions

JZ JumpifA=20

JNZ JumpifA =0

DJNZ Decrement and Jump if A = 0
CJNE A byte Jump if A = byte

CJNE reg,#data Jump if byte = #data

JC JumpifCY =1

JNC JumpifCY =0

JB Jump if bit = 1

JNB Jump if bit = 0

JBC Jump if bit = 1 and clear bit

a All conditional jumps are short jumps

» The address of the target must within
-128 to +127 bytes of the contents of PC

Mnemonic Operation of Bytes Example Description
1. program counter is incremented by
two
PC=PCH2 2. stack pointer is incremented by one
SP=5P+1] L
| SP=PCy.- 3. lm*;lerdbytehnfs I1:}11& stack pointer is
ACALL 1lbitaddr | op_cp.;) JKB ACALL DELAY | Pusieconties
.) 4. stack pointer incremented by one
SP=Ple1s and the higher byte is pushed on the
PC=11 bit addr stack :
3. program counter is loaded with 11
bit address
1. program counter is incremented by
two
PC=PCH3 2. stack pointer is incremented bv one
SP=5P+1 L
. 3. lower bvte of the stack pointer is
SP=PCy; ushed on the SP
LCALL 16 bit addr | SP=SP+1 3 64KB LCALL LCD P . .
e .) 4. stack pointer incremented by one
SP=PCe.1s and the higher byte is pushed on the
PC=16bit addr stack)
3. program counter is loaded with 16
bit address
1. the higher byte is pop out of the
stack
EEESIP_IS P 2. stack pointer is decremented by one
RET PC; "=-SP 1 | RET 3. lower bvte is pop out of the stack
SP=SP.] pointer

L -lll-

stack pointer is decremented by one

