Semester- III Paper- III

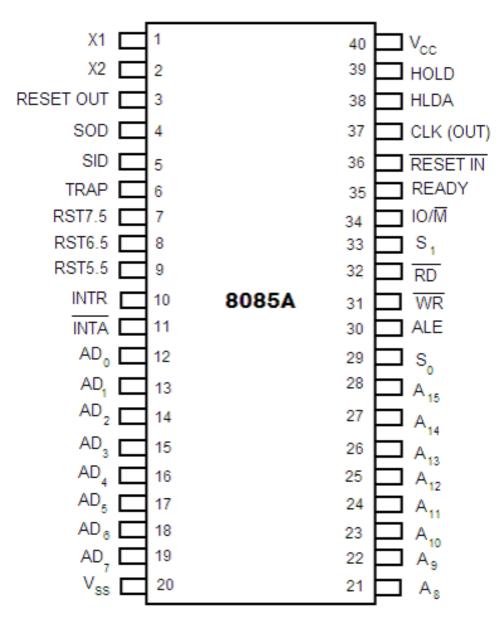
DSC -1005 C: Electronics Communication and Microprocessor 8085

Section II: Microprocessor 8085

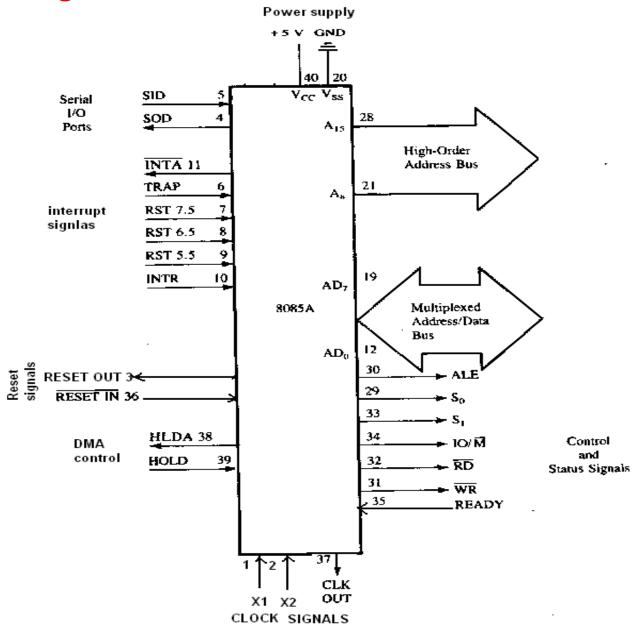
UNIT 2: 8085 Microprocessor Architecture

Presented By:
Dr. C. B. Patil
Vivekanad College (Autonomous), Kolhapur

8085 Microprocessor Architecture:

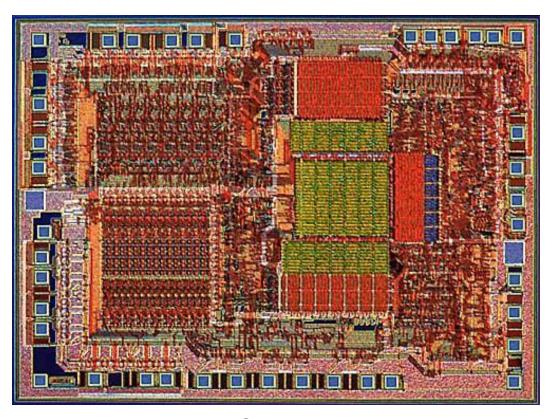

Architecture of 8085 Microprocessor:
Salient features of 8085, Block diagram and Pin description of 8085, Data and address bus, Registers, ALU, Stack pointer, Program counter, Flag register, Clock and reset circuits. Interrupts in 8085, Demultiplexing of ADO-AD7.T-states, Machine cycle, Instruction cycle, Timing diagram of MOV and MVI instrucitons.

- 1. 8085μp was manufactured by INTEL.
- 2.It is 40 pin IC manufactured using N-MOS technology.
- 3.It is an 8-bit microprocessor i.e. it can accept, process or provide 8-bit data simultaneously.
- 4. It operates on a single +5V power supply connected at Vcc
- 5. It operates on clock cycle with 50% duty cycle.
- 6. It has on chip clock generator. This internal clock generator requires tuned circuit like LC, RC or crystal. The internal clock generator divides oscillation frequency by 2 and generates clock signal, which can be used for synchronizing external devices.
- 7. It can operate with 3 MHz clock frequency.
- 8. It has 16 address buses, hence it can access 2^{16} =64 Kbytes of memory.
- 9. It provides 8 bit I/O address to access (2^8) =256 I/O ports.

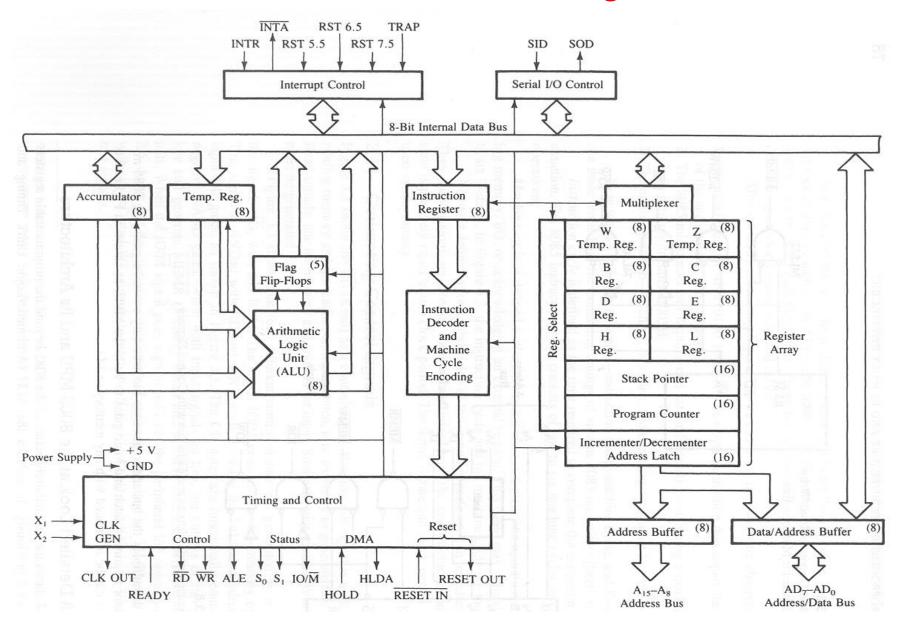

- 10. In 8085, the lower 8-bit address bus $\binom{A_0 A_7}{0}$ and data bus $\binom{D_0 D_7}{0}$ are multiplexed to reduce number of external pins. But due to this, external hardware is required to separate address lines and data lines.
- 11. It supports 74 instructions with following addressing modes.
- (a) Immediate, (b) Register, (c) Direct (d) Indirect (e) Implied.
- 12. The Arithmetic logic unit of 8085 performs a) 8 bit binary addition with or without carry. (b) 16 bit binary addition (c) 2 digit BCD addition (d) 8-bit binary subtraction with or without borrow (e) 8-bit logical AND, OR, EX-OR, complement (NOT) and bit shift operations.
- 13. It has 8-bit accumulator, flag register, instruction, register, six 8-bit general purpose. Registers (B, C, D, E, H and C) and five 16-bit registers (SP and PC)
- 14. It provides five hardware interrupts: TRAP, RST 7.5. RST 6.5, RST 5.5 and INTR.
- 15. It has serial I/O control which allows serial communication.

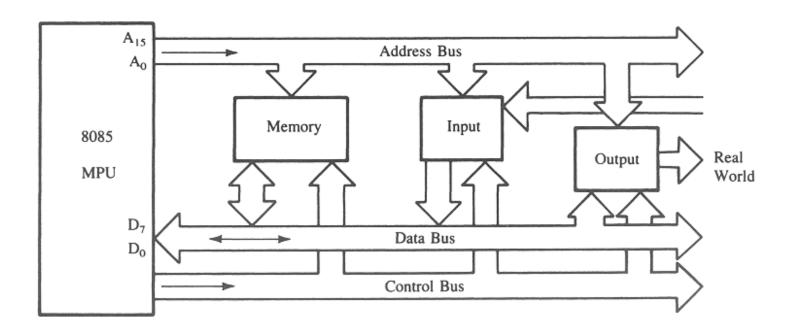
- 16. It provides control signals (RD, WR) to control bus cycles.
- 17. The status signals (IO /M, S0, S1) decides which type of machine cycle microprocessor is executing.
- 18. It has mechanism by which it is possible to increase its interrupt handling capacity.
- 19. The 8085 has an ability to share system bus with direct memory access controller. This feature allows to transfer large amount of data from I/O device to memory or from memory to I/O device with high speeds.

Pin diagram of 8085



8085 signal diagram


Intel 8085 Microprocessor


- Introduced in 1974
- 8-bit architecture
- Still used in some microcontroller applications!

8085 Functional Block Diagram

The 8085 Bus Structure

The 8-bit 8085 CPU (or MPU – Micro Processing Unit) communicates with the other units using a 16-bit address bus, an 8-bit data bus and a control bus.

The 8085 Bus Structure

Address Bus

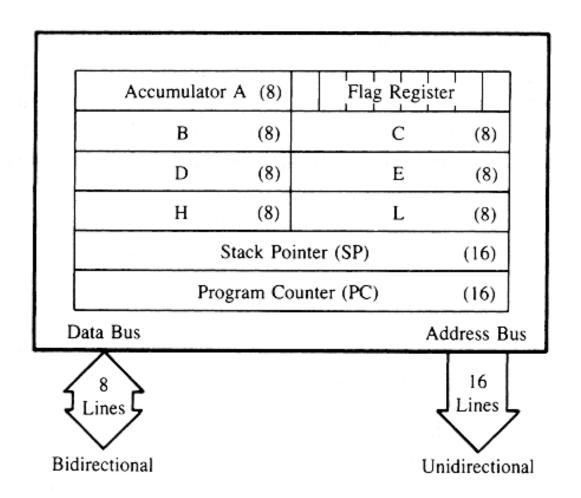
- Consists of 16 address lines: A₀ A₁₅
- Operates in unidirectional mode: The address bits are always sent from the MPU to peripheral devices, not reverse.
- 16 address lines are capable of addressing a total of $2^{16} = 65,536$ (64k) memory locations.
- Address locations: 0000 (hex) FFFF (hex)

The 8085 Bus Structure

Data Bus

- Consists of 8 data lines: D₀ D₇
- Operates in bidirectional mode: The data bits are sent from the MPU to peripheral devices, as well as from the peripheral devices to the MPU.
- Data range: 00 (hex) FF (hex)

Control Bus


 Consists of various lines carrying the control signals such as read / write, enable etc.

The 8085: CPU Internal Structure

The internal architecture of the 8085 CPU is capable of performing the following operations:

- Store 8-bit data (Registers, Accumulator)
- Perform arithmetic and logic operations (ALU)
- Test for conditions (IF / THEN)
- Sequence the execution of instructions
- Store temporary data in RAM during execution

The 8085: Registers

The 8085: CPU Internal Structure

Registers

- Six general purpose 8-bit registers: B, C, D, E, H, L
- They can also be combined as register pairs to perform 16-bit operations: BC, DE, HL
- Registers are programmable (data load, move, etc.)

Accumulator

- Single 8-bit register that is part of the ALU!
- Used for arithmetic / logic operations the result is always stored in the accumulator.

Flag register

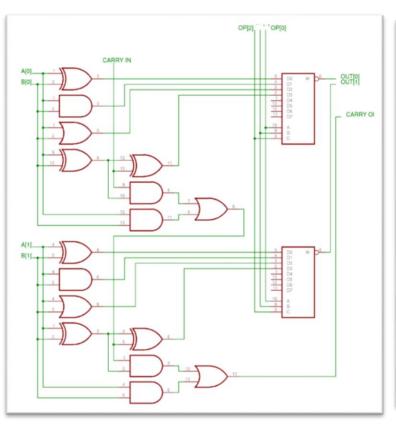
D 7	D ₆	D5	D4	D3	D ₂	Dı	D ₀
S	Z		AC		P		CY

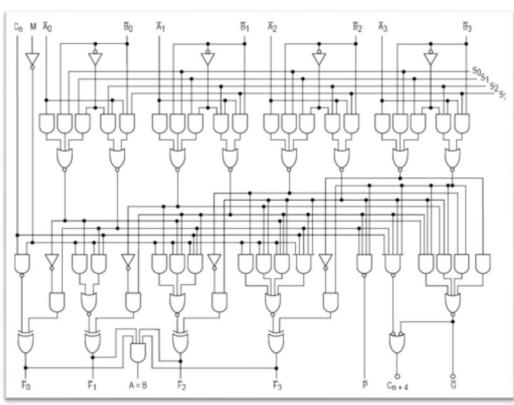
Flag Bits

- Indicate the result of condition tests.
- Sign , Zero, Auxiliary Carry, Parity and Carry
- Conditional operations (IF / THEN) are executed based on the condition of these flag bits.

- sign flag[S]- indicates the sign of a value(result) calculated by an arithmetic or logical instruction. S=0, Result=+ve & S= 1, Result= -ve
- 2. zero flag[Z]- is set to 1 if an arithmetic or logical operation produces a result of 0; otherwise set to 0.
- 3. parity flag[P]- is set to 1 if the result of an arithmetic or logical operation has an even number of 1's; otherwise it is set to 0.
- 4. carry flag [CY]- is set when an arithmetic operation generates a carry out.
- 5. auxiliary carry flag [AC]- very similar to CY, but it denotes a carry from the lower half of the result to the upper half.

The 8085: CPU Internal Structure

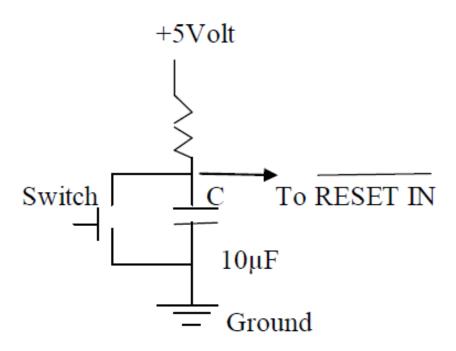

Program Counter (PC)

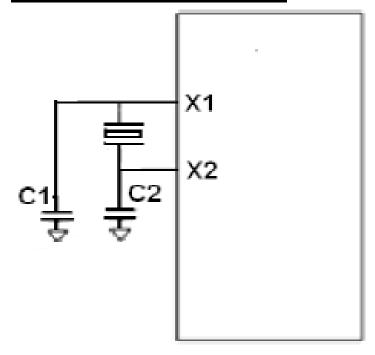

 Contains the memory address (16 bits) of the instruction that will be executed in the next step.

Stack Pointer (SP)

a sixteen bit register used as a stack memory pointer.
 PUSH and POP instructions are used to access stack memory.

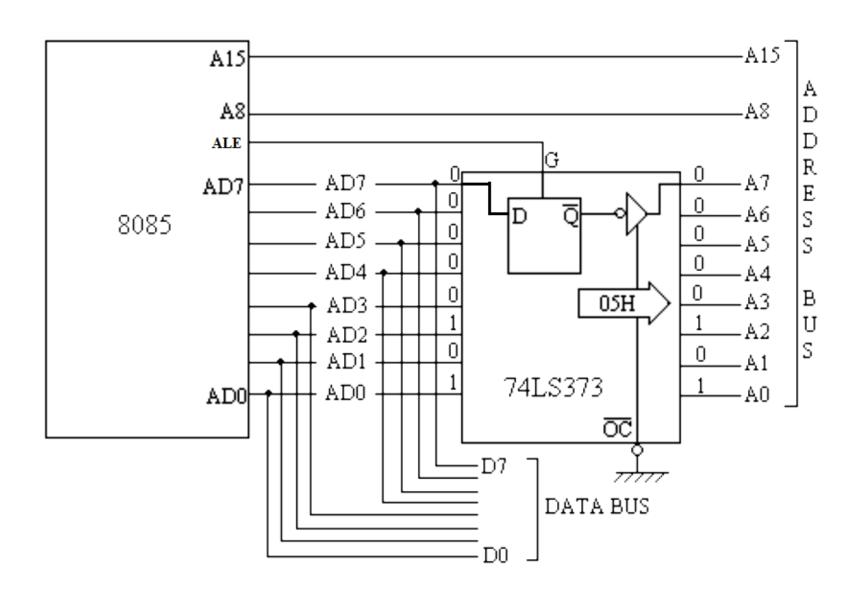
Internal structure of ALU




2 bits of ALU

4 bits of ALU

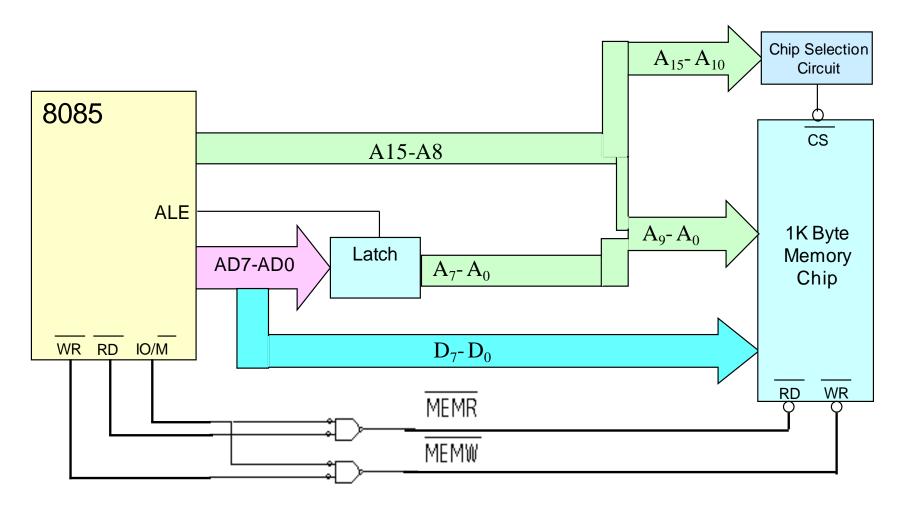
Reset Circuit


CLOCK Circuit

☐ INTR (Input)	Interrupt Request: This is used as a general-purpose interrupt; it is similar to the INT signal of the 8080A.
☐ INTA (Output)	Interrupt Acknowledge: This is used to acknowledge an interrupt.
☐ RST 7.5 (Inputs)	Restart Interrupts: These are vectored interrupts that transfer the pro-
RST 6.5	gram control to specific memory locations. They have higher priorities
RST 5.5	than the INTR interrupt. Among these three, the priority order is 7.5, 6.5, and 5.5.
☐ TRAP (Input)	This is a nonmaskable interrupt and has the highest priority.

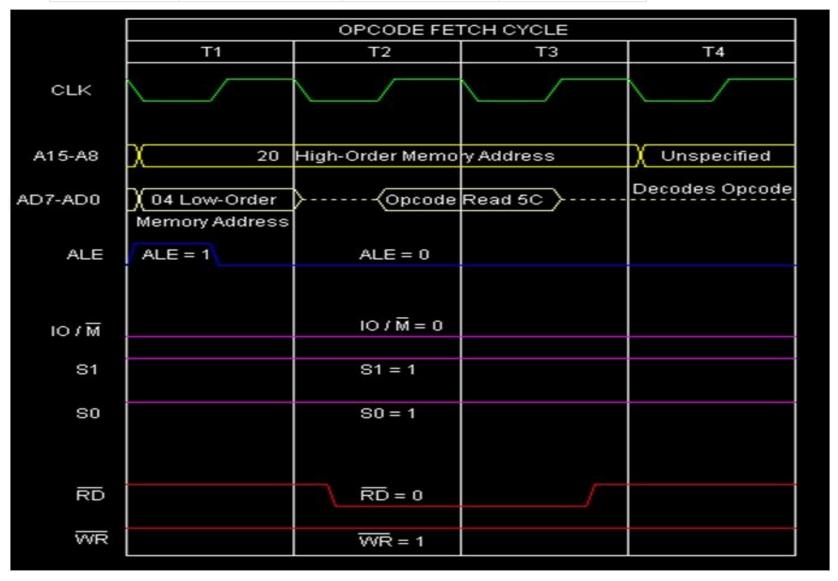
Pin	Subroutine Location		
TRAP	0024		
RST 5.5	002C		
RST 6.5	0034		
RST 7.5	003C		
INTR	*		
Note: * the address of the ISR is determined by the external hardware.			

Demultiplexing of AD_0 - AD_7 :

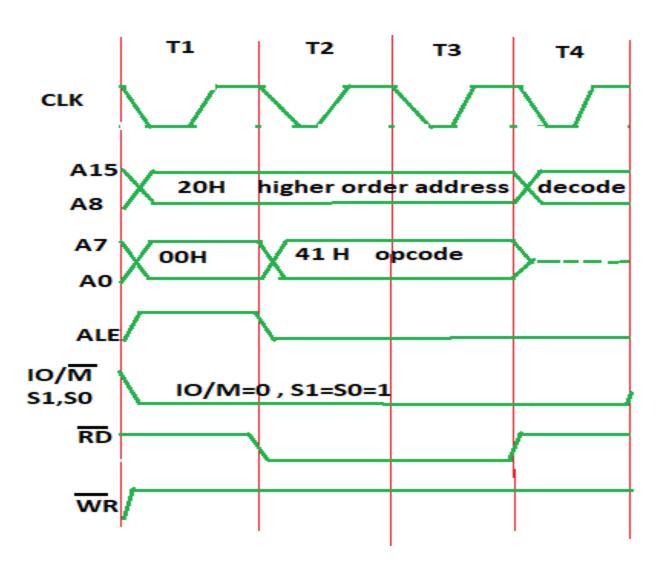

8085 Machine Cycles:

The 8085 microprocessor has 5 (five) basic machine cycles as shown in Table 1.2.

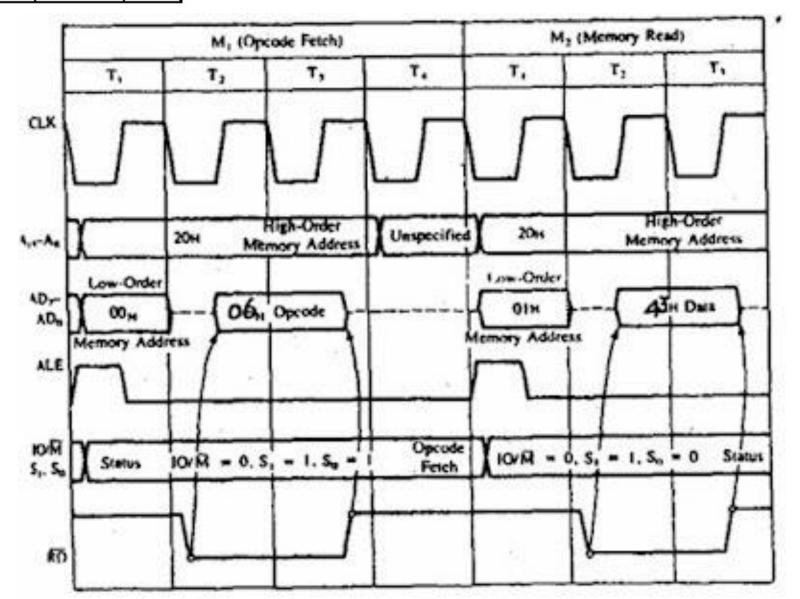
Machine cycle	Sta	tus signal	Control signals		
	IO/M	S1	S0	RD	WR
1. Opcode fetch cycle (4T)	0	1	1	0	1
2. Memory read cycle (3 T)	0	1	0	0	1
3. Memory write cycle (3 T)	0	0	1	1	0
4. I/O read cycle (3 T)	1	1	0	0	1
5. I/O write cycle (3 T)	1	0	1	1	0


Interfacing Memory:

- Select the chip.
 - •Identify the memory register.
 - •Enable the appropriate buffer.


Timing diagram of MOV Instruction

Address	Hex Codes	Mnemonic	Comment
2004	5C	MOV E, H	E <- H


Timing diagram of MOV Instruction

2000: MOV B, C copies the contents of the source register into the destination register. The instruction MOV B, C is of 1 byte; therefore the complete instruction will be stored in a single memory address

Address	Mnemonics	Op cod e	
2000	MVIB, 43 _H	06н	
2001		43 _H	

Timing diagram of MVI Instruction

Sel	ect c	orrect alter	natives:		
1)	808	5μp is	- bit micro	processor.	
	a)	4	b) 8	c) 16	d) 32
2)	Oper	ating frequ	ency of 80	85μp is	MHz
	a) 1		b) 2	c) 3	d) 4
3) -		technology	is used to	fabricate	8085μρ.
	a)	NMOS	b) CMOS	c) HMOS	d) TTL
4)		register is ι	ised to ind	licate statu	us of the result.
	a)	ACC	b) Flag	c) PC	d) SP
5) -	i	s a 16 bit re	egister.		
	a) A	CC	b) Flag	c) PC	d) B
6) -	j:	s a memory	pointer r	egister.	
	a)	ACC	b) Flag	c) PC	d) B
7) ·		signal is use	ed to Dem	ultiplexing	g AD0-AD7.
	a)	RESET IN	b) ALE	c) S0, S1	d) IO/M
8)	8085	microproce	essor can a	access	bytes of memory.
	a)	8 K	b) 16K	c) 32K	d) 64K
9)	8085	microproce	essor has -	bit dat	a bus.
	a)	4	b) 8	c) 16	d) 32
10) To c	ommunicat	te with slo	wer memo	ories signal is used.
	a) R	ESET IN	b) ALE	c) READY	d) HOLD

11		are 16-bit	registers.				
	a)	PC and ACC b) SP ar		b) SP and	d ACC c) PC and SP d) ACC and B		SP d) ACC and B
12		is no	t be an Int	terrupt sign	nal.		
	a)	INTR	b) RST 7.	5	c) RST 5	.5	d) HOLD
13. F	Princ	cipal register	in 8085 m	nicroproces	ssor is		
	a)	ACC	b) Flag	c) PC	d) SP		
14		reg	isters can	be acts as	inputs fo	r ALU.	
	a)	ACC and B	b) B and (c) PC and	d SP d) AC	CC and Temp Register
15		reg	isters are	not user a	ccessible.		
	a)	ACC and B	b) B and (c) PC and	d SP d) W	and Z
16. 8	3085	microproce	ssor has	nun	nber of G	eneral purp	oose registers.
	a)	4	b) 6	c) 8	d) 10		
17. 8	3085	microproce	ssor has	it addre	ess bus.		
		a) 4	b) 8	c) 16	d) 32		
17. 8	3085	microproce	ssor can b	e reset by	using	signal.	
	18.	HOLD	b) ALE	c) READY	/	d) RESET	IN
19. I	f cry	stal of 6MHz	z is conne	cted to Mic	croprocess	sor then th	e operating clock frequency is—
Ν	1Hz	a) 6	b) 3	c) 16	d) 1		

20.	. Microprocessor writes a data into a memory by activating the signals as						
		a) S0=0), S1=0, IO	/M=1, RD=0		b) S0=0, S1=0, IO/M	l=0, RD=0
		c) S0=0	, S1=1, IO	/M=0, WR=0	d) S0=1,	S1=0, IO/M=0, WR=0	
21.	Micropro	cessor re	ads a data	from input o	device by ac	tivating the signals as	
		a) S0=0), S1=0, IO	/M=1, RD=0		b) S0=0, S1=0, IO/M	l=0, WR=0
		c) S0=0	, S1=1, IO	/M=0, WR=0)	d) S0=0, S1=1, IO/M	l=1, RD =0
22.	si	gnal is n	ot an outpu	ıt signal.			
	a)	RD	b) WR	c) S0	d) READ	Y	
23.	Micropro	cessor us	ses	-signals to c	ommunicate	with serial devices.	
	a) HO	LD and I	HLDA b)	TRAP and	RST 7.5	c) SID and SOD	d) READY and HOLD
24.	Addressi	ng capac	city of micro	processor d	epends upo	n	
	a) add	lress line	es	b) data lii	nes	c) control lines	d) all of these
25.	8085 mic	roproces	sor has pri	marily	interrupt	signals.	
		a) 4	b) 5	c) 8	d) 10		
26.	The 8085	micropr	ocessor us	sessigna	als to share s	system bus with Direct	Memory Access (DMA) controller.
	a) HO	LD and I	HLDA	b) TRAP	and RST 7.	c) SID and SOD	d) READY and HOLD