B. Sc. III: Semester- V Paper- DSE 1005E1 Linear Integrated Circuits, 8051 Microcontroller Interfacing and Embedded C
Section II: 8051 Microcontroller Interfacing and Embedded C

UNIT 2 :Real World Interfacing of 8051

Presented By:
Dr. C. B. Patil
Vivekanand College (Autonomous), Kolhapur

UNIT 2 :Real World Interfacing of 8051

Syllabus: Interfacing to output devices - LED, Relay, LCD, seven segment display, seven segment display (multiplexing mode), DC Motor, Stepper Motor. Interfacing to input devices - Switch, 4X4 matrix keyboard, opto-coupler, thumb wheel switch. Interfacing to DAC0808 and ADC0804.

INTERFACING OF LED WITH 8051

Commonly used LEDs has generally barrier potential of 1.5 V and current of 10 mA . If this voltage and current applied to the LED, it glows with full intensity.

Circuit Description: The power on reset circuit with R1_C3 is connected to RESET pin and for generating clock the crystal and capacitors C1 and C2 of 33pf are connected between XTAL1 and XTAL2 pin of microcontroller.

We cannot connect any pin of the 8051 to the LED directly because required current for LED is more than sinking/sourcing capacity of the 8051 and it is harmful. Therefore transistor (SL100) is used as buffer. It's base terminal is connected to port pin P2.0 through 47 K resistor. This resistor limits the base current. The LED is connected in between Vcc and collector of transistor through resistor R4.This resistor limits current through LED (10 mA).

When we make Pin P2.0 high (by giving instruction the SETB P2.0) transistor will become ON, then current flows through LED-collector-emitter of transistor and hence LED turns ON .To make LED off we make pin P2.0 low by using instruction CLR P2.0.

INTERFACING OF LED WITH 8051

START : SETB P2.0; Make port pin P2.0 High (LED ON) ACALL DELAY ; LED ON for some time CLR P2.0; Make port pin P2.0 Low (LED OFF) ACALL DELAY ; LED ON for some time SJMP START ; Continues LED ON-OFF

DELAY: MOV TMOD,\# $01 \mathrm{H} ; \quad$ Timer 0 mode 1 selection MOV THO,\# OOH; MOV TLO,\# OOH ; SETB TRO ; AGAIN: JNB TFO,AGAIN ; CLR TRO ; CLR TFO ; RET ;

Load Higher byte of timer 0 with initial count 00 H
Load Higher byte of timer 0 with initial count 00 H
Start the timer 0
Monitor TFO flag to check count finish or not
Stop the timer
Clear the overflow Flag
Return from subroutine.
*Time delay $=65536 \times 1.085 \mu \mathrm{~S}(1$ machine cycle period for crystal freq. 11.0592 MHz)= $71106 \mu \mathrm{~S}$ or 71.106 ms .

The value of resistor R4
R4= (Vcc-VD-VCE)/IC
Where, Vcc; Supply Voltage (+5 V)
VD: LED barrier potential(+1.5V)
VCE: Collector to emitter (when transistor becomes on here 0.6V)
IC: Collector current(here LED Current=10mA)
R4 $=330 \mathrm{Ohm}$
R3 $=(V P 2.0-V B E) / I B=(V P 2.0-V B E) \beta / I C$
Where VP2.0=Maximum voltage at pin P2.0(Here it is +5 V)
VBE=Base to Emitter Voltage when transistor ON(here 0.6V)
IB=base Current
IC: Collector current(here LED Current=10mA)
$\beta=$ Current gain of transistor(Here 100)
$R 3=47 \mathrm{~K}$

The R1=8.2 K \& C3=10 $\mu \mathrm{F}$ forms power on Reset.
The Crystal $\mathrm{X}=11.0592 \mathrm{MHz}$ and $\mathrm{C} 1=\mathrm{C} 2=33 \mu \mathrm{~F}$ used as clock circuit of 8051

Interfacing of switch with 8051:

We can connect a number of switches at ports of the 8051. A switch is connected at the port pin P1.0 and we read status of switch is displayed on LED connected at P2.0

Circuit Description:

A Switch is connected at port pin P1.0 and it is normally open. One terminal of the switch is connected to $+V c c$ through pull up resister and one terminal is grounded. When switch is pressed port pin becomes low and when switch is open the port pin becomes high.

The statues of the switch is read by using MOV A,P1 and it display on LED. In this case port P1 must configured as an input port.LED is connected at pin P2.0 through buffer transistor. The data from the accumulator is transferred to port 2 by giving instruction MOV P2,A after complementing.

Interfacing of LED and switch with 8051

ALP:
START: MOV A, \# OFFH ; MOV P1, A;

AGAIN: MOV A,P1;

CPLA;

MOV P2,A ;
SJMP AGAIN ;
Make all pins of port P1 high so that port P1 is input port
Read the statues of the switch and transfer it to Accumulator
Compliment for switch closed LED will be ON
Display statues of the switch on LED
Continuous

Interfacing of stepper motor to 8051

A Stepper Motor is a brushless, synchronous motor which divides a full rotation into a number of steps. DC motor which rotates continuously when a fixed DC voltage is applied to it, while a step motor rotates in discrete step angles. The number of steps required to complete one complete rotations known as steps per revolution. If stepper motor has $12,24,72,144,180$ and 200 resulting stepping angles are $30,15,5,2.5,2$, and 1.8 degrees per step (step angle= 360/steps).

Working (Stepper Motor)

Stepper motors consist of a permanent magnetic rotating shaft, called the rotor and electromagnets on the stationary portion that surrounds the motor, called the stator. Fig.3.12 illustrates one step rotation of a stepper motor. At position 1, we can see that the rotor is beginning at the upper electromagnet, which is currently active (has voltage applied to it). To move the rotor clockwise (CW), the upper electromagnet is deactivated and the right electromagnet is activated, causing the rotor to move 90 degrees CW, aligning itself with the active magnet. This process is repeated in the same manner step by step upto starting position. In this example step angle is 90 degree and it will requires 4 steps to complete one rotation. This is full stepping method.

Fig 3.12 Full Stepping Method

$\prod^{\frac{\text { dtt }}{2}}$

-
II
Fig. 3.13 Half stepping

Step	Winding A	Winding B	Winding C	Winding D
1	1	0	0	1
2	1	1	0	0
3	0	1	1	0
4	0	0	1	1

Table 3.1 Stepper Motor step sequence

ALP for Motor clockwise rotations

MOV A, \# 66 H ;Load bit pattern in accumulator
BACK: MOV P1,A ; Transfer bit pattern to port P1 (only P1.0-P1.3 s are used) RR A ;Rotate accumulator right (Motor rotates in clock wise by one step)
ACALL DELAY; delay (speed of motor depends on delay) SJMP BACK ;continues rotation
*To rotate motor anticlockwise instruction please use RL A instead of RR A

DELAY: MOV TMOD,\# 01 H ;Selection of Timer 0 in mode 1
MOV THO, \# OEEH ;Load Higher byte of timer 0 with initial count EEH MOV TLO, \# OOH ;Load Higher byte of timer 0 with initial count 00 H SETB TRO ;Start the timer 0
AGAIN: JNB TFO,AGAIN ;Monitor TFO flag to check count finish or not
CLR TRO ;Stop the timer
CLR TFO ;Clear the overflow Flag
RET ;Return from subroutine.

Fig. Circuit diagram to interface stepper motor with 8051

Interfacing of LCD with 8051

Pin No:	Name	Function
1	VSS	This pin must be connected to the ground
2	VCC	Positive supply voltage pin (5V DC)
3	VEE	Contrast adjustment
4	RS	Register selection RS=1 selects data register RS=0 Selects Command Register
5	R/W	Read or write
6	E	To read from reg R/W=1 to write on reg. R/W=0
$7-14$	D0-D7	Enable pulse enables command or data reg.
15	LED Data Lines	
16	LED-	Back light LED+

Fig 3.16. LCD interfacing with 8051

Command	Function	
0 FH	LCD ON, Cursor ON, Cursor blinking ON	
01 H	Clear screen	
02 H	Return home	
04 H	Decrement cursor	
06 H	Increment cursor	
0 EH	Display ON ,Cursor blinking	
80 H	Force cursor to the beginning of 1st line	
C 0 H	Force cursor to the beginning of 2nd line	
38 H	Use 2 lines and 5×7 matrix	
08 H	Display OFF, Cursor OFF	
Table 3.3 LCD Commands		

ALP 3.9 ALP to show letters "YES" on LCD

```
To send command for LCD we have to make
RS=0 Pin P3.2=0
R/W=0 Pin P3.1=0
E= High to Low Pulse Pin P3.0=1 to 0
To send data for LCD we have to make
RS=1 Pin P3.2=1
R/W=0 Pin P3.1=0
E= High to Low Pulse Pin P3.0=1 to 0
LDATA EQU P1 ;LCD data lines connected at P3
RS EQU P3.2 ;LCD RS pin connected at P3.2
RW EQU P3.1 ;LCD RW pin connected at P3.1
E EQU P3.0 ;LCD E pin connected at P3.0
BUSY EQU P1.7 ;LCD BUSY bit connected at P1.7
LCD_INI: MOV A,#38H ; Initialize LCD 2 lines 5 x 7 matrix
    ACALL COMMAND ; Command subroutine Call
    MOV A,#OEH ;Display On cursor On
    ACALL COMMAND ; Command subroutine Call
    MOV A,#01H ;Clear LCD
    ACALL COMMAND ; Command subroutine Call
    MOV A,#06H ;Shift cursor right
    ACALL COMMAND ; Command subroutine Call
    MOV A,#84H ; Cursor at line 1, position 4
    ACALL COMMAND ; Command subroutine Call
    MOV A, #'Y' ; display Letter Y on LCD
    ACALL DISPLAY ;display subroutine call
    MOV A, #'E' ; display Letter E on LCD
    ACALL DISPLAY ;display subroutine call
    MOV A, #'S' ; display Letter S on LCD
    ACALL DISPLAY ;display subroutine call
STOP: SJMP STOP ;STOP
```

```
COMMAND: ACALL DELAY ; subroutine Checking display LCD status (ready/busy)
    MOV LDATA,A ; Send command to LCD on data pin
    CLR RS ; RS=0 for command
    CLR RW ; RW=0 for LCD write operation
    SETBE;E=1 for H-to-L pulse
    NOP
    NOP
    CLR E; E=O for H-to-L pulse
    RET ; Return to main program
DISPLAY: ACALL DELAY ;subroutine Checking display LCD status (ready/busy)
    MOV LDATA,A ; Send data to LCD on data pin
    SETB RS ; RS=1 for data
    CLR RW ; RW=0 for write operation
    SETBE;E=1 for H-to-L pulse
    NOP
    NOP
    CLRE; E=O for H-to-L pulse
    RET ; Return to main program
DELAY: MOV TMOD,#OH; Selection of Timer 0 in mode 1
    MOV THO,#OEEH; Load higher byte of timer O with count EEH
    MOV TLO,#OOH; Load lower byte of timer O with count OOH
    SETB TRO ; Start the Timer
AGAIN: JNB TFO; AGAIN; Monitor TFO flag to check count finish or not
    CLR TO; stop the Timer
    CLR TFO; Clear over flow flag
    RET ; Return from subroutine
```


Example 12-2

Write an 8051 C program to send letters ' M^{\prime}, ' D ', and ' E ' to the LCD using the busy flag method.

Solution:

\#include <reg51.h>
sfr Idata $=0 \times 90 ; / /$ P1=LCD data pins
sbit rs = P2^0;
sbit rw $=$ P2^1;
sbit en $=$ P2^2;
sbit busy $=\mathrm{P} 1^{\wedge} 7$;
void main()
\{
Icdcmd(0x38);
Icdcmd(0x0E);
Icdcmd(0x01);
Icdcmd(0x06);
Icdcmd(0x86); //line 1, position 6
Icddata(' ${ }^{\prime}$ ');
Icddata('D');
Icddata('E');
\}
void Icdcmd(unsigned char value)
\{
Icdready(); //check the LCD busy flag
Idata = value; //put the value on the pins
rs = 0;
rw = 0;
en = 1 ; //strobe the enable pin
MSDelay(1);
en = 0;
return;
\}
void Icddata(unsigned char value)
\{
Icdready(); //check the LCD busy flag
Idata = value; //put the value on the pins
rs = 1;
rw = 0;
en = 1 ; //strobe the enable pin
MSDelay(1);
en = 0;
return;
\}

```
void Icdready()
{
busy = 1; //make the busy pin at input
rs = 0;
rw = 1;
en = 1; //strobe the enable pin
MSDelay(1);
en = 0;
while(busy==1){ //wait here for busy flag
}
void Icddelay(unsigned int itime)
{
unsigned int i, j;
for(i=0;i<itime;i++)
for(j=0;j<1275;j++);
}
```

Interfacing of MAX 232 WITH 8051


```
Write a program for the 8051 to transfer" "YES" serially at 9600
baud, 8-bit data, 1 stop bit, do this continuously
Solution:
    MOV TMOD,#20H ;timer 1,mode 2 (auto reload)
    MOV TH1,#-3 ;9600 baud rate
    MOV SCON,#50H ;8-bit, 1 stop, REN enabled
    SETB TR1 ;start timer 1
AGAIN: MOV A,#"Y"r ;transfer "Y"
    ACALL TRANS
    MOV A,#"E" ;transfer "E"
    ACALL TRANS
    MOV A,#"S" ;transfer "g"
    ACALL TRANS
    SJMP AGAIN ;keep doing it
;serial data transfer subroutine
TRANS: MOV SBUF,A ; load SBUF
HERE: JNB TI,HERE ;wait for the last bit
CLR TI ;get ready for next byte
RET
```

Write a program for the 8051 to receive bytes of data serially, and put them in P1, set the baud rate at 4800,8 -bit data, and 1 stop bit

Solution:

$$
\begin{aligned}
& \text { MOV TMOD, \#20H ;timer } 1, \text { mode } 2 \text { (auto reload) } \\
& \text { MOV TH1,\#-6 ; } 4800 \text { baud rate } \\
& \text { MOV SCON, \#50H ;8-bit, } 1 \text { stop, REN enabled } \\
& \text { SETB TR1 ;start timer } 1 \\
& \text { HERE: JNB RI, HERE ; wait for char to come in } \\
& \text { MOV P1,A } \quad \text { send to port } 1 \\
& \text { CLR RI } \\
& \text {; get ready to receive next } \\
& \text {; byte } \\
& \text { SJMP HERE ;keep getting data }
\end{aligned}
$$

