

Index

Remedial Coaching: 2019-2020

Title	Page No.
Notice	1-2
List of the students	3
Presenty	4
Test – I	5
Test – II	7
Marks and Progress	9
One page report	10
	Notice List of the students Presenty Test – I Test – II Marks and Progress

VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR REMEDIAL COACHING: 2019-20 Department of Mathematics

Notice

All the students of First year 2019-20 are hereby informed that first test will be conducted on 12/08/2019. On basis of this test students will be sorted for remedial coaching 2018-19.

Venue: Room. No. 39

Time: 01:00 pm to 02:00 pm

1964 PARTIES TO THE P

(Mr. S. P. Patankar)

HEAD

Department of Mathematics

Vivekanand College, Kolhapur

REMEDIAL COACHING: 2019-2020

Department of Mathematics

Notice

All the students of remedial coaching 2019-2020 are hereby informed that final test will be conducted on 13/09/2019.

Venue: in room. No. 39.

Time: 02:00 PM - 03: 00 PM

ESTO. ESTO. IN 1984 88

REMEDIAL COACHING: 2019-2020

List

Department of Mathematics

Sr. No.	Name of the Student	
1	Shweta Jitendra Koshti	
2	Aditi Brijesh Chauhan	
3	Sidhhi Suresh Kabir	
4	Madhumati Tanaji More	
5	Ashwini Ashok Patil	
6	Ajay Ravasaheb Rajput	
7	Sanket Ravindra Chougale	
8	Prajyot Sanjay Mali	
9	Shivam Nilkhanth Jawale	

REMEDIAL COACHING: 2019-2020

Department of Mathematics

Presenty

Date

Sr. No.	Name of the Students	12/08/2019	13/08/2019	19/08/2019	20/08/2019	26/08/2019
1	Shweta Jitendra Koshti	Koshti	Trophy	THOUSE	2 CONT	Holles
2	Aditi Brijesh Chauhan	ABchardia	ABchanhan	Applante	Abchanhan	Abchanh
3	Sidhhi Suresh Kabir	5.S. kabi	Ab	S-S- Kabita	S.S. Kabira	A
4	Madhumati Tanaji More	Coleman	Cake.	Ega.	Ode_	60 m
5	Ashwini Ashok Patil	AAtabi	Affahil	Affali	Ab	Affatil
6	Ajay Ravasaheb Rajput	Apajent	ARajens	Ab	ARayput	ARajout
7	Sanket Ravindra Chougale	Perunic	Tohough	Ab	- Churches	Haryle
8	Prajyot Sanjay Mali	Psmale	Psmali	Psmale	Psmali .	Psmali
9	Shivam Nilkhanth Jawale	& Talvale	& Turale	Mitaul	Intaule	Staule

Date

Sr. No.	Name of the Student	27/08/2019	02/09/2019	03/09/2019	09/09/2019	10/09/2019
1	Shweta Jitendra Koshti	Leathin	Tront	Appliff.	Roll	Horling
2	Aditi Brijesh Chauhan	ABchanhar	Abchauhar	Abchaulas	Abchauha	Abdrauh
3	Sidhhi Suresh Kabir	S.S. Kabon				s.s kabita
4	Madhumati Tanaji More	Ab	and_	topacs	The	AD
5	Ashwini Ashok Patil	(A)APOHU	(A) Apolly	Ab	Abportil	About
6	Ajay Ravasaheb Rajput	APipul	Apput	ARajpul	Apripul	Apojput
7	Sanket Ravindra Chougale	- Frank	- and	- Tanada	Changle	Dans
8	Prajyot Sanjay Mali	.Psmali	Psmali	Psmal	Psmdj	Psmali
9	Shivam Nilkhanth Jawale	AN TAWARE	Sesawall	fraude	Intaunie	Entrauble

REMEDIAL COACHING: 2019-2020

Department of Mathematics

Progress

Sr. No.	Name of the Student	First Test	Second Test	Progress
1	Shweta Jitendra Koshti	10	12	10%
2	Aditi Brijesh Chauhan	08	14	30%
3	Sidhhi Suresh Kabir	08	14	30%
4	Madhumati Tanaji More	06	16	50%
5	Ashwini Ashok Patil	02	16	70%
6	Ajay Ravasaheb Rajput	04	18	70%
7	Sanket Ravindra Chougale	10	10	00%
8	Prajyot Sanjay Mali	08	12	20%
9	Shivam Nilkhanth Jawale	06	06	00%

ESTD. ICH JUNE 1964 SS VI

Vivekanand College, Kolhapur(Autonomous)

Department of Mathematics

Remedial Coaching: 2019-2020

Test - I

Date: 12/08/2019			Marks: 20
Name:			
Note: Tick mark the corr	ect alternative.		
Q.1) The derivative of x^2	is		
A) 2x		B) x	
C) 2		D) 0	
Q.2) If $\int_0^a 3x^2 dx = 8$, find	the value of a.		
A) 2	B) - 3	C) 3	D) - 2
Q.3) If $y = e^{mx} + e^{-mx}$ th	$nen \frac{d^2y}{dx^2} = \cdots$		
A) m^2y	B) my	c)-my	$D)-m^2y$
Q.4) If $y = 5^x$ then $\frac{dy}{dx} = \cdot$			
$A) x(5^{x-1})$	$B) \frac{5^x}{\log 5}$	C) $5^x log 5$	D) None Of these
Q.5) If A and B are symm	etric matrices of sar	ne order, then $AB-$	<i>BA</i> is a
A) Skew – symm	etric matrix	B) Symmetric	matrix
C) Zero matrix		D) Identity	
Q.6) If $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$ then A	² is		
$A)\begin{bmatrix}0&4\\4&0\end{bmatrix}$	$B)\begin{bmatrix} 4 & 0 \\ 4 & 0 \end{bmatrix}$	$C)\begin{bmatrix}0&4\\0&4\end{bmatrix}$	$D)\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$
Q.7) If A be square matrix	x of order 3×3 and	k scalar, then $ kA $ is	equal to
A) k A	B) k A	C) $k^3 A $	D) None Of these
	n then the total nu	mber of non-empty r	relations that can be defined
from A to B is A) m^n	B) $n^{m} - 1$	C) $mn-1$	D) $2^{mn} - 1$
			$x + y \le 4, x \ge 0$ and $y \ge 0$
A) 12			D) 18

$Q.10) \int_0^3 x^2 dx = \cdots$			
A) 2	B) $\frac{27}{3}$	C) $\frac{8}{3}$	$D) \frac{8}{9}$
Q.11) The magnitude of the	e vector $6\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$	is equal to	
A) 5	B) 1	C) 7	D) 12
Q.12) The linear inequalities	es or equations or res	trictions on the varial	oles of a linear
programming proble	m are called		
A) a constraints		B) desicion variabl	es
C) objective functi	ions	D) None of these	
Q.13) If $f(x) = x^3 - 12x^2$	+45x + 8 at which p	oint does f(x) has its r	naximum?
A) 1	B) 7	C) 3	D) 5
Q.14) The degree of the dif	ferential equation $\left(\frac{d^2}{dt}\right)$	$\left(\frac{2y}{x^2}\right)^{\frac{2}{2}} + 4 - 3\frac{dy}{dx} = 0$ is.	
A) 2	B) 1	C) 3	$D)\frac{2}{3}$
Q.15) The maximum numb	er of equivalence rela	ations on the set $A = \{$	[1,2,3] are
A) 1	B) 2	C) 3	D) 5
Q.16) The number of binar	ry operations on the s	set {a, b} are	
A) 10	B) 16	C) 20	D) 8
Q.17) If $f(x) = x^3 - \frac{1}{x^3}$, the	$en f(x) + f(1/x) = \cdot$		
A) $2x^3$	B) $2\frac{1}{x^3}$	C) 0	D) 1
Q.18) Which of the followi	ng function is odd fur	nction?	
A) sinx	B)tanx	C) Sec x	D) cosec x
Q.19) The line $y = x + 1$ is	s a tangent to the cur	we $y^2 = 4x$ at the poin	t
A) (1,2)	B) (2,1)	C) (-1,2)	D) (1,-2)
Q.20) The differential equ	ation of the function	c + 4yx = 0 is	
$A)xy + \frac{dy}{dx} = 0$	$B) x \frac{dy}{dx} + y = 0$	$C) \frac{dy}{dx} - 4xy = 0$	$D) x \frac{dy}{dx} + 1 = 0$

Vivekanand College, Kolhapur(Autonomous)

Department of Mathematics

Remedial Coaching: 2019-2020

Test - II

Date: 13/09/2019 Marks: 20 Name: Note: Tick mark the correct alternative. Q.1) Value of k, for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is... $Q.2) \int_0^{\frac{\pi}{2}} \cos x \, dx = \cdots$ A)1Q.3) The linear inequalities or equations or restrictions on the variables of a linear programming problem are called..... B) desicion variables A) a constraints C) objective functions D) None of these Q.4) If $y = x^3 \log x$ then $\frac{dy}{dx} = \cdots$ A) $x^2(1+3\log x)$ B) $x^2(1-3\log x)$ C) $x^3(1+\log x)$ D) $x^3(1+3\log x)$ Q.5) The function $f(x) = x + \cos x$ is B) Always decreasing A) Always increasing C) increasing for a certain range of xD) None of these Q.6) The value of the x if $\begin{vmatrix} 2+x & 3+x & 4+x \\ 1 & 2 & -1 \\ 2 & 1 & 3 \end{vmatrix} = 0$ Q.7) A solution which satisfies the non-negativity restrictions of L.P.P. is called as A) Feasible solution B)Optimal solution C) Non-feasible solution D) None of these Q.8) Set A has 3 elements, and set B has 4 elements. Then the number of injective mappings that

(C) 24

D) 64

can be defined from A to B is

B) 12

A) 144

Q.9) If $A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$ t	hen A ² is		
$A)\begin{bmatrix}0&9\\9&0\end{bmatrix}$	$B)\begin{bmatrix} 4 & 0 \\ 4 & 0 \end{bmatrix}$	$C) \begin{bmatrix} 0 & 4 \\ 0 & 4 \end{bmatrix}$	$D)\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$
Q.10) The magnitud	de of the vector $4\hat{\imath} + 2\hat{\jmath}$	$+4\hat{k}$ is equal to	
A) 5	B) 7	C) 6	D) 12
Q.11) The number	of binary operations on	the set $\{a, b\}$ are	
A) 10	B) 12	C) 16	D) 20
Q.12) If $P(A) = 0.8$	P(B) = 0.5 and $P(B/A)$)=0.4, what is value	e of $P(A \cap B) = ?$
A) 0.5	B) 0.25	C) 0.1	D) 0.32
Q.13) If l,m,n are th	e direction cosines of a l	ine, then	
A) $l^2 + m^2 +$	$-2n^2=1$	B) $l^2 +$	$m^2 + n^2 = 1$
$C) 2l^2 + m^2$	$+n^2=1$	$D) l^2 +$	$2m^2 + n^2 = 1$
Q.14) If $x = t^2$, $y =$	t^3 , then $\frac{d^2y}{dx^2} = \dots$		
$A) \frac{3}{2}$	$B) \frac{3}{4t}$	C) $\frac{3}{2t}$	$D)\frac{3t}{2}$
Q.15) The line $y = 3$	x + 3 is a tangent to the	curve $y^2 = 4x$ at the	point
A) (1,2)	B) (2,1)	C) (-1,2)	D) (1,-2)
Q.16) If $\int_0^a 3x^2 dx =$	27, find the value of a.		der ein ne idere verbeitet.
A) 2	B) 3	C) - 3	(D) - 2
Q. 17) The scalar pr	oduct of 5i+j-3k and 3i-	4j+7k is:	
A) 15	B) - 15	C)10	D) - 10
Q.18) The magnitud	e of the vector $6\hat{\imath} + 2\hat{\jmath} +$	$-3\hat{k}$ is equal to	
A) 5	B) 1	C) 7	D) 12
Q.19) If A be square	matrix of order 3×3 and	nd k scalar, then $ 5A $	is equal to
A) 5 A	B) 25 A	$C) 5^{3} A $	D) None Of these
Q.20) The direction	al ratios of the normal to	the plane $7x + 4y -$	-2z + 5 = 0 are
<i>A</i>) 7,4,−2	B) 7,4,5	C) 7,4,2	D) 4, -2,5

"Education for Knowledge, Science, and Culture"

Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur **KOLHAPUR (AUTONOMOUS)** (Autonomous)

2019-20

Report: Remedial Coaching

1. Name of Department

: Mathematics

2. Name of Organized Activity : Remedial Coaching

3. Date/ Duration

: 12/08/2019 - 13/09/2019

Aims and Objectives

: 1. To Enhance Academic Performance of slow learners

2. To Address Individual Needs of Advanced and slow

learners

4. No. of beneficiaries

: Total = 09

04-1-4-	Male	04	
Students	Female	05	

6. Expenditure & funding agency : Nill

7. Brief description: On the behalf of Mathematics department remedial coaching was arranged for Slow learners. First test was taken on 12/08/2019 of 20 marks. Slow learners were chosen on basis of marks in first test. Total ten number of lectures were arranged from 12/08/2019 to 10/09/2019. Former faculty of department of mathematics conducted lectures in room no. 39 at 09:30 AM to 30 AM on each Friday

11:

and Saturday. Students were eager to learn and were grateful to organiser.

- **8. Outcomes**: 1. Performance of slow learners is improved.
- 2. Students improved relation with Professors and fellow students.

9. Photos

Enclosed

10. Signatures of coordinator/ organizer: Mr. S.P. Patankar

