Vivekanand College, Kolhapur (Autonomous) Department of Mathematics M. Sc. I Sem. I and M.Sc. II Sem III Internal Examination 2018-19

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on as given below timetable. The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Syllabus for M. Sc. I Sem. I

Sr. No.	Name of Paper	Topics
1	CP-1170A : Algebra	Unit I
2	CP-1171A: Advanced Calculus	Unit I
3	CP-1172A: Complex analysis	Unit I
4	CP-1173A: Ordinary Differential Equation	Unit I
5	CP-1174A: Classical Mechanics	Unit I

Syllabus for M. Sc. II Sem. III

Sr. No.	Name of Paper	Topics
1	CC-1180C: Functional Analysis	Unit I
2	CC-1181C: Advanced Discrete Mathematics	Unit I
3	CBC-1182C: Lattice Theory	Unit I
4	CBC-1183C: Number theory	Unit I
5	CBC-1184C: Operational Research -I	Unit I

Timetable

Date	Time	Class	Subject
08/10/2018	03:00 PM to 04: 00 PM	M.Sc. I	Algebra
	03:00 PM to 04: 00 PM	M.Sc. II	Functional Analysis
09/10/2018	03:00 PM to 04: 00 PM	M.Sc. I	Advanced Calculus
	03:00 PM to 04: 00 PM	M.Sc. II	Advanced Discrete Mathematics
1010/2018	03:00 PM to 04: 00 PM	M.Sc. I	Complex analysis
	03:00 PM to 04: 00 PM	M.Sc. II	Lattice Theory
11/10/2018	03:00 PM to 04: 00 PM	M.Sc. I	Ordinary Differential Equation
	03:00 PM to 04: 00 PM	M.Sc. II	Number theory
12/10/2018	03:00 PM to 04: 00 PM	M.Sc. I	Classical Mechanics
	03:00 PM to 04: 00 PM	M.Sc. II	Operational Research -I

Nature of question paper

Time:-1 Hours

Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

(Prof. S. P. Patankar)
HEAD
Department of Mathematics
Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous) M.Sc. I Semester-I Internal Examination: 2018-19 MATHEMATICS

C. I. All. I. (CD 4450)	
Sub: Algebra (CP-1170A)	Time: 03:00 PM - 04:00PM
Date: 00/10/2010	**************************************
Date: 08/10/2018	Total Marks:30

Q1) Select the correct alternatives (5) 1] In a group of order 15 the number of subgroups of order 3 is ... c) 1 2] If G is an arbitrary group of even order 2n then ...

- - a) G has a proper normal subgroup which is non trivial.
 - b) G admits a quotient group of order n
 - c) G has a subgroup of order 2
 - d) G admits a quotient group of order 2.

3] For
$$n \ge 2$$
 let $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^*$ be the groups of units of $\frac{\mathbb{Z}}{n\mathbb{Z}}$ which one of the following is cyclic?
a) $\left(\frac{\mathbb{Z}}{8\mathbb{Z}}\right)^*$ b) $\left(\frac{\mathbb{Z}}{15\mathbb{Z}}\right)^*$ c) $\left(\frac{\mathbb{Z}}{10\mathbb{Z}}\right)^*$ d) $\left(\frac{\mathbb{Z}}{35\mathbb{Z}}\right)^*$

- 4] Let $G = \{1, -1\}$ then the group < G .> is a) isomorphic to $<\mathbb{Z}$, +> b) homomorphic image of $<\mathbb{Z}_5$, +>
 - d) a homomorphic image of $<\mathbb{Z}$,+> c) isomorhic to $\langle \mathbb{Z}_5, + \rangle$
- 5] Order of As is... a) 60 b) 120 c) 5 d) 5!

Q2) Solve any THREE of the following.

(15)

- 1] Prove that every permutation σ of a finite set A is a product of disjoint cycles.
- 2] Define commutator subgroup of group G. Show that G is abelian if and only if commutator subgroup is {e}.
- 3] Show that for $n \ge 3$, Subgroup generated by 3 cycle of A_n is A_n .
- 4] Define index of subgroup . Find index of A_n in S_n . Show that A_n is normal in S_n

Q3) Solve any ONE of the following.

(10)

- 1] State and prove Schreier theorem.
- 2] State and prove Caley's theorem.

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-I) Semester-I Internal Examination:2018-19

Subject : Advanced Calculus	Time: 03:00pm-04:00 pm
Total Marks: 30	Date:09/10/2018
Q. 1 Select the correct alternative for each of the	ne following: [5]
i. he series $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges unif	ormly on R if
A) $\sum a_n$ converges B) \sum	a connerges
$\sum_{n=1}^{\infty} n$	an control ges
$\sum_{n=0}^{\infty} \sin(nx) \cos(nx) = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sin(nx) \sin(nx)$	1.4.6.31
A) $\sum_{n=1}^{\infty} a_n \ converges$ B) $\sum_{n=1}^{\infty}$ C) $\sum_{n=1}^{\infty} sin(nx) \ converges$ D) $\sum_{n=1}^{\infty}$	sin(nx) converges.
ii. Radius of convergence for the seris $\sum_{n=1}^{\infty}$	$\frac{z^n}{1-z^n}$ is
ii. Radius of convergence for the seris $\sum_{n=1}^{\infty} A$) 2 B) 1 C) 1 D) s iii. For a vector field $\bar{f}, \bar{f}'(\bar{c}; \bar{0}) = \frac{B}{A}$ C) $\bar{0}$ C) $\bar{0}$ C	/2
C) 1 D) s	eries always diverges.
iii. For a vector field \bar{f} , $\bar{f}'(\bar{c}; \bar{0}) = \underline{\hspace{1cm}}$	
A) 0 B) ē
C) 0 D) ē
iv. If $T: \mathbb{R}^n \to \mathbb{R}^m \& S: \mathbb{R}^m \to \mathbb{R}^p$ are linear	then order of matrix of $(S.T) =$
1) n v n P) m v n C) n	N. m. N. m. N. m.
A) $n \times p$ B) $m \times p$ C) p	$\times n$ D) $m \times n$
v] If α_1 v1+ α_2 v2++ α_n vn=0, where v1, v2,	, vn are linearly independent vectors in a
vector space V(F), then i) i=0 for all i=1,2,, n	ii) i+0 for all i-1 2
iii) i=0 for at least one i	ii) $i\neq 0$ for all $i=1,2,,n$ iv) $i\neq 0$ for at least one i
Q.2. Attempt any three of the following:	1v) 170 for at least one 1
1) Prove that the sequence $\{f_n\}_{n=1}^{\infty}$ converges point	[15] wise but not uniformly
where $f_n(x) = \frac{1}{nx+1}$, $0 < x < 1$	wise but not unity of hity
ILAT1	
2) State & prove Green's theorem for plane region	on bounded by piecewise smooth
Jordon curve.	
3) If $\sum_{n} a_n$ converges absolutely then prove that	t every subseris $\sum b_n$
$\frac{1}{n}$	$\frac{\sum_{n}^{\infty} n}{n}$
also converges absolutely.	
4) Let \bar{f} be a vector field given by $\bar{f}(x,y) = \sqrt{y}i$	$+(x^3+y)j$ where $(x,y) \in \mathbb{R}^{2}$.
Q.3. Attempt any one of the following:	[10]
1. If $\{f_n\}$ & $\{g_n\}$ be sequences of Riemann into	
	X
$\lim_{n\to\infty} f_n = f \& \lim_{n\to\infty} g_n = g \text{ on } [a,b]. Let h_n$	$f_n(x) = \int f_n(t)g_n(t)dt &$
	a
$h(x) = \int_{0}^{x} f(t) g(t) dt$	
prove that $h_n \to h$ uniformely on $[a, b]$	
2. If $\{M_n\}$ be a sequence of non – negative re	al numbers such that $0 \le f_n(x) \le M_n$
$\forall n \in \mathbb{N} \& \forall x \in S. Prove that \sum f_n converge$	
	,
$\sum M_n$ converges.	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-L.) Semester-L. Internal Examination :2018-19

M.Sc. (Part-I') Semester-	I Internal Examinati	on :2018-19	
Subject : Complex Analysis	Time,Date: 03:00p	m onwards , 10/10/2018	
Total Marks: 30			
Q. 1 Select the correct alternative for each of i) If $f(z) = x^2y^2 + i2xy$ and $g(z) = 2xy$ complex plane C.	of the following: $y + i(x^2 - y^2) \ \forall z \in c$,	[5] then in the	
A) f is analytic and g is not analytic	B) f is not analytic an	d g is analytic	
C) f is analytic and g is analytic	D) f is not analytic and		
ii) If C is the circle $ z - a = r$ then $\int_C \frac{dz}{(z-a)^n}$	$\tau = 2\pi i$, when		
iii) If C is the circle of radius 2 with center	at the origin in the con	nplex plane, oriented in	
the anti - clockwise direction. Then the	integral $\oint \frac{dz}{(z-1)^2}$ is equal	l to	
A) 1 B)2π <i>i</i>	C) 0) 1/2πί	
iv) For the function $f(z) = \frac{z - sinz}{z^3}$, at the point	nt z = 0 is		
A) Pole of order 3	B) Pole of order 2		
C) Essential singularity) Removable singulari	у	
v) For the function $f(z) = \frac{z - \sin z}{z^3}$, at the	point $z = 0$ is		
A) Pole of order 3	B) Pole of order 2		
C) Essential singularity	D) Removable sing	gularity	
Q.2. Attempt any three of the following: 1) If radius of convergence of $f(z) = \sum_{n=1}^{\infty} a_n z$ 2) The radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$ is.		analytic (no where)	5
3) If $u(x,y) = x^3 + ax^2y + bxy^2 + 2y^3$ is ha 4) If γ is a contour with parameter interval	rmonic function and v(
continuous function on the contour	$\gamma \text{ with } f(z) \leq M, \forall$	$z \in \gamma$, then prove that	
$\left \int_{C} f(z) dz \right \leq ML$ where L is the le	ngth of contour given	by $\int_a^b \gamma'(t) dt$	
 Q.3. Attempt any one of the following: 1) 0 ≤ R < ∞ called the radius of one i) ∑ a_nzⁿ converges absolutely find ii) If z > R, the terms of power diverges. find the radius of converges. 2) Define harmonic conjugate and 	for every z with $ z < F$ series become unbountergence of the power of the prove that the function	and so the series series $\sum_{n=0}^{\infty} (\frac{1}{n})^n z^n$. on $u = x^2 - y^2 + xy$)
satisfies Laplace's equation and	ind the correspondin	g analytic function I(z)	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2018-19) Ordinary Differential Equations

Time: 03:00PM to 04:00PM

Total Marks: 30

Date: 11/10/2018

Q.1) Choose the correct alternative for the following question. [05]

i) Wronskian of the two solutions of the differential equation $y'' + a_1(x)y' + a_2(x)y = 0$ on an interval I is

A) Identically Zero

B) Never Zero

C) Either identically zero or never zero

D) Always Constant

ii) Which of the following is not solution of $y''' - 3r_1y'' + 3r_1^2y' - r_1^3y = 0$, where r_1 is constant

 $A)\emptyset(x) = e^{r_1 x}$

B) $\emptyset(x) = x^2 e^{r_1 x}$

C) $\emptyset(x) = xe^{r_1x}$

D) $\emptyset(x) = x^3 e^{r_1 x}$

iii) If $p_n(x)$ and $p_m(x)$ are n^{th} and m^{th} Legendary polynomials respectively, then $\int_{-1}^{1} p_n(x) p_m(x) = 0$ is possible when

A) m = n

B) $m \le n$

 $C)m \ge n$

D) $m \neq n$

iv) If $f(x, y) = y^{\frac{2}{3}}$, $R = \{(x, y) | |x| \le 1, |y| \le 1\}$ and K is Lipschitz constant then

A) F satisfies Lipschitz Condition on R with $k = \frac{1}{2}$

B) F satisfies Lipschitz Condition on R with k = 0

C) F satisfies Lipschitz Condition on R with k = 1

D) F do not satisfy Lipschitz Condition on R

v) The General solution of y'' + y' - 2y = 0 is

A) $c_1 e^{-x} + c_2 e^{-2x}$

B) $c_1 e^x + c_2 e^{-2x}$

C) $c_1 e^x + c_2 x e^x$

D) $c_1 e^{-x} + c_2 e^{2x}$

Q.2) Attempt any three

[15]

i) Determine all complex numbers m of the given problem -y'' = my, y(0) = 0, y(1) = 0 as a non-trivial solution and compute such a solution for each of this m.

ii) Compute the Second lineally independent solution of equation $x^2y'' - xy' + y = 0$, $\phi_1(x) = x$, (x > 0)

iii) If $\emptyset_1, \emptyset_2, \ldots, \emptyset_n$ are the 'n' solutions of L(y) = 0 on an interval I containing point x_0 , satisfying $\emptyset_i^{(i-1)}(x_0) = 1$, $\emptyset_i^{(j-1)}(x_0) = 0$, $j \neq i$, $i,j=1,2,3,\ldots,n$, and \emptyset is any solution of L(y) = 0 on I, then show that there are 'n' constants c_1, c_2, \ldots, c_n such

that
$$\emptyset = c_1 \emptyset_1 + c_2 \emptyset_2 + \dots + c_n \emptyset_n$$

iv) Show that $\int_{-1}^{1} p_n(x) p_m(x) = 0 \ (n \neq m)$

Q.3) Attempt any One

- i) If $\emptyset(x)$ is any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing an point x_0 , than show that $\forall x_0$ in I, $\|\emptyset(x_0)\| e^{-k|x-x_0|} \le \|\emptyset(x)\| \le \|\emptyset(x_0)\| e^{k|x-x_0|}$ where, $\|\emptyset(x)\| = [\|\emptyset(x)\|^2 + \|\emptyset'(x)\|^2]^{\frac{1}{2}}$ and $k = 1 + |a_1| + |a_2|$
- ii) If \emptyset_1 is a solution of $L(y) = y'' + a_1(x)y' + a_2(x)y = 0$ on an interval I and $\emptyset_1(x) \neq 0$ on an interval I, then show that the second solution \emptyset_2 of L(y) = 0 on I given by, $\emptyset_2(x) = \emptyset_1(x) \int_{x_0}^x \frac{1}{[\emptyset_1(s)]^2} \exp[-\int_{x_0}^s a_1(t)dt] ds$ and function \emptyset_1, \emptyset_2 form a basis for the solution of L(y) = 0 on I.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2018-19) **Classical Mechanics**

Tin	ne: 3:00PM-4:00PM	7	Total Marks: 3	0
Dat	e:12/10/2019			
Q.	(1) Choose the correct alterna	ative for the following	question.	05]
1) K	inetic energy of a particle of mass m a	and position vector \bar{r}	4	را
	in polar form is			
	A) $T = m (\dot{r}^2 + r^2 \dot{\theta}^2)$ B	$T = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2)$		
		$T = \dot{r}^2 + r^2 \dot{\theta}^2$		
2) M	athematical expression for D Alember			
I		$\sum (\overline{F}_t - \overline{P}_t) \delta \overline{r}_t \neq 0$		
	$\Sigma) \sum (\overline{F}_i - \dot{\overline{p}}_i) \delta \overline{r}_i = 0 $ D)	$\sum (\overline{F}_i - \dot{\overline{p}}_i) \delta \overline{r}_i \neq 0$		
3) Ex	pression for the Rayleigh's dissipation	n function is		
A	$R = \Sigma \lambda_i (\dot{r}_i)^2$ B)	$R=2\Sigma\lambda_i(\dot{r_i})^2$		
c)	$R = \frac{1}{2} \sum \lambda_i (\dot{\tau_i})^2$ D)	$R = \lambda_i (\dot{\vec{r}}_i)^2$		
	body continues in it's state of rest or u	niform motion, unless		
n	o external force is applied to it is	·····		
	LAW OF INERTIA	B) LAW OF FORCE		
	LAW OF ACTION AND REACTION			
	e time rate of change of momentum is	proportional to		
	npressed force is			
A CONTRACTOR OF THE PARTY OF TH	LAW OF INERTIA	B) LAW OF FORCE		
C) I	AW OF ACTION AND REACTION	D) NONE OF THESE		
Q.	2) Attempt any three			[15]
1)	Explain how the generalized co-ordineduces to six for its description.	inates of a rigid body with N	particles	
2)	Explain Atwood machine and discus	ss it's motion.		
3)	Find the differential equation of the with semi-vertical angle θ .	geodesic on the surface of an	inverted cone	
4)	Obtain the Lagrangian L from the H Lagrange's equations of motion.	amiltonian H and show that it	t satisfies	
	Attempt any One		[10]	
1)	Define the following terms.			
a)	Holonomic Constraints			

- b) D'Alembert's Principle
- Brachistochrone Problem
- d) Hamiltonian Function
- 2) Find the expression for kinetic energy as the quadratic function of generalized velocities. Further
 - I) When the constraints are scleronomic, the kinetic energy is homogeneous function of generalized velocities and

$$\sum_{j} \dot{q}_{j} \frac{\partial T}{\partial \dot{q}_{j}} = 2T$$

velocities and
$$\sum_j \dot{q}_j \frac{\partial T}{\partial \dot{q}_j} = 2T$$
 II) When the constraints are rheonomic, then
$$\sum_j \dot{q}_j \frac{\partial T}{\partial \dot{q}_j} = 2T_2 + T_1; \text{ where } T_1 \text{ and } T_2 \text{ have usual meaning}$$

Vivekanand College, Kolhapur (Autonomous) M.Sc. II Semester-III Internal Examination: 2018-19 MATHEMATICS

Sub: Functional Analysis Time: 03:00pm -04:00pm Date: 08/10/2018 Total Marks:30 Q.1. Choose correct Alternative for the following. (5) i) Consider following two statements; I) Every normed linear space is a metric space. II) Every metric space is normed linear space. A) Only II is true. B) I is true and II is false C) Only I is false D) II is true and I is false. ii) Every projection on a Banach space B is A) linear, bounded, idempotent B) linear, idempotent, continuous C) linear, norm preserving, nilpotent D) Both A and B iii) In Hilbert space every sequence is A) convergent C) oscillatory B) not convergent D) none of these iv) If A and B are self-adjoint operators on H then their product AB is ___ if and only B) AB = BAC) A = BD) $AB \neq BA$ v) Consider following two statements I)Every Banach space is reflexive norm linear space II)Every reflexive norm linear space is Banach Space A) Only II is true. B) I is true and II is false C)Only I is false D) II is true and I is false Q2) Solve any THREE of the following. (15)1)If N' is Banach space then prove B(N, N') is Banach space with respect to norm $||T|| = \sup\{||T(x)||, x \text{ in } N ||x|| \le 1\}$ 2)If N is a normed linear space and x₀ is non zero vector in N then show that there exist a functional f₀ in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$ 3)Define Banach space. Show that l_{∞} (space of all bounded sequences of scalars) which is normed linear space with $|| ||_{\infty}$ given by $|| x ||_{\infty} = \sup |x_i|$ for all x in l_{∞} is banach space. 4)If N is a normed linear space and x₀ is non zero vector in N then show that there exist a functional f₀ in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$ Q3) Solve any ONE of the following. (10)1) Prove that a normed linear space N is finite dimensional if and only if $S = \{x \text{ in } N / ||x|| \le 1\}$ is compact. 2)State and prove Hahn Banach theorem.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2018-19) Advanced Discrete Mathematics

Time:3:00PM-	-4:00PM			otal Marks: 30 ate: 09/10/2018
Q.1) Choose th	e correct alter	native for the follo	wing questio	on. [05]
i) A k-cycle has	number of edge	es.		
A) <i>k</i>	B) $k - 1$	C) $k + 1$	D) $\frac{k}{2}$	
ii) If G is connecte	ed graph, then G is	tree iff every edge of (3 is	
A) loop	B) bridge	C) not bridge	D) none	of these
iii) The order of re	currence relation	$a_r - 4a_{r-2} + 3a_{r-3} =$	5r + 2 is	
A) 0	B) 1	C) 2	D) 3	
iv) For a bounded	distributive lattice	an element can have	complement	t if they exist.
A) only one	B) exactly	two C) more	than two	D) zero
v) The homogeneo	us solution to recu	$a_r + 2a$	$a_{r-1} - 8a_{r-2} =$	= 0 is
$A) A_1(2)^r + B$	$B_1(4)^r$	B) $A_1(2)^r + B_1($	$(-4)^r$	
C) $A_1(-2)^r +$	$B_1(4)^r$	D) $A_1(-2)^r + B_1$	$(-4)^r$	
Q.2) Attempt a	ny three			[15]
i) If G is a simple g	graph and G is not	connected, then show t	hat G is connec	ted.

- ii) Define regular graph. If G is a k-regular graph where 'k' is odd number, then prove that number of edges in G is multiple of 'k'.
- iii) Prove that an edge e of graph G is a bridge iff e is not part of any cycle in G.
- iv) If G is a graph with n-vertices, q-edges and w(G) number of connected components, then show that G has at-least n-w(G) number of edges.

Q.3) Attempt any One

- i) If G is a non-empty graph with at-least two vertices, then prove that G is bipartite iff G has no odd cycles.
- ii) Define Radius and Diameter of graph. Prove that in any connected graph G, $radG \le diamG \le 2 \ radG$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination: 2018-19 MATHEMATICS

Subject: Lattice Theory Time: 03: 00 PM-04:00pm Date: 10/10/2028 Total Marks: 30 Q. 1 Select the correct alternative for each of the following: [5] i. Consider the following statements Statement - 1) Every ideal is heriditory subset. Statement - 2) Every heriditory subset is ideal. A) Only 1) true B) Only 2) true C) Both 1)&2) true D) Both 1)&2) false. ii. Consider the following statements Statement - 1) Every ideal is heriditory subset. Statement - 2) Every heriditory subset is ideal. A) Only 1) true B) Only 2) true C) Both 1)&2) true D) Both 1)&2) false iii. Consider the following statements Statement -1) M_3 is modular lattice. Statement - 2) Every chain need not be modular lattice. A) Only 1) true B) Only 2) true C) Both 1)&2) true D) none of these iv. Which of the following is incorrect regarding lattice? A) [{1,2,3,6,9,18} |] is bounded lattice B) $[\mathbb{Z} \leq]$ is not bounded lattice C) $[(0,1) \le]$ is bounded lattice D) $[[0,1] \leq]$ is bounded lattice v. Consider the following statements Statement - 1) I(L) is not ring of set. Statement - 2) H(J(L)) is ring of set. A) Only 1) true B) Only 2) true C) Both 1)&2) true D) none of these O.2. Attempt any three of the following: [15] **1)** If θ is a congruence relation on lattice L then for every $a \in L$ prove that $[a]_{\theta}$ is convex sublattice of L. 2) Prove that the lattice L is distributive lattice if $f \exists median \forall a, b, c \in L$. 3) If θ be a congruence relation on lattice L then show that $\forall a \in L, [a]_{\theta}$ is convex sublattice of L.

4) Show that set of all ideals of lattice L forms a lattice under set inclusion.

Q.3. Attempt any one of the following:

[10]

1) In any lattice L prove the following conditions always holds.

 $i) (x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$

 $(ii) x \lor (y \land z) \le (x \lor y) \land (x \lor z) \quad \forall x, y, z \in L$

2) State and prove Stones theorem.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2018-19) Number Theory

Time:03:00PM to 04:00PM Total Marks: 30 Date:11/10/2018 Q.1) Choose the correct alternative for the following question. [05] 1] If GCD of two number is 8 and LCM is 144, then what is the second number if first number is 72? a) 24 b) 2 c) 3 d) 16 2] The linear combination of GCD (252, 198) is..... a) 252 * 4 - 198 * 5 b) 252 * 5 - 198 * 4c) 252 * 4 + 198 * 5 d) 252 * 5 + 198 * 54 3] Square of any odd integer is of the form...... a) 2kb)2k + 1c) 8k + 1d) 4k 4] What is GCD of 48, 18, 0...... a) 24 b) 3 c) 2 d) 6 5] The prime factorization of 7007 is a) 7^3 . 11.13 b) 7². 11.13 c) 11^3 . 7.13 d) 13^3 . 7.13 Q.2) Attempt any three [15] 1)Prove that the expression $\frac{a(a^2+2)}{3}$ is an integer for a>1. 2)Prove that for given integers a and b not both zero there exists integers x and y such that gcd(a, b) = ax + by. 3) Prove that for any positive integer n and a, gcd(a, b)/n and hence prove that $\gcd(a, a+1) = 1$ 4) State and Prove Euclid's Lemma. Q.3) Attempt any One [10]

1) State and Prove Division Algorithm.

 $lcm(a, b) \times gcd(a, b) = ab.$

2) Prove that for given integers a and b not both zero.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2018-19) Operational Research-I

Time: 03:00PM to 04:00 PM Total Marks: 30

Date: 12/10/2018

Q.1) Choose the correct alternative for the following question. [05]

i) The set $x = \{(x_1, x_2): 2x_1 + 3x_2 = 7\}$ is ...

A) a convex set B) concave set C) not a convex set D) none of these

ii) The point at which $\nabla f(x) = 0$ are called ...

A) boundary points B) interior points C) extreme points D) convex point

iii) The solution of Dynamic Programming Problem is based upon...

A) Bellman's principle of calculus

B) Principle of Optimality

C) Bellman's principle of optimality D) None of these

iv) The general NLPP with inequality constraints....

A) Can be solved by using Kuhn -Tucker conditions

B) Can be solved by Lagrange's method

C) Can be solved only if the constraints are of \leq type

v) If an optimal solution is degenerate, then

A) it has an alternate optimal solution B) solution is infeasible

C) solution is unbounded

D) None of these

Q.2) Attempt any three

[15]

i) Define convex set. Show that the set $S = \{(x_1, x_2): 3x_1^2 + 2x_2^2 \le 6\}$ is convex set

ii) Prove that the set of all convex combinations of a finite number of points of set

S= $\{x: x = \sum_{i=1}^m x_i \lambda_i, \lambda_i \ge 0, \sum_{i=1}^m \lambda_i = 1\}$ is a convex set iii) Solve the following problem by dynamic programming Min $Z = x_1^2 + x_2^2 + x_3^2$

subject to $x_1 + x_2 + x_3 \ge 100$, $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

iv) Prove that the set of feasible solution to an LPP is a convex set

Q.3) Attempt any One

- i) Prove that a basic feasible solution to an LPP must correspondence to an extreme point of the set of all feasible solution and conversely (Extreme point correspondence theorem)
- if) Explain the computational procedure of the simplex method in detail.

Date: 25/04/2019

Vivekanand College, Kolhapur (Autonomous) Department of Mathematics M. Sc. I Sem II and M.Sc. II Sem IV Internal Examination 2018-19

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on as given below timetable. The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Syllabus for M. Sc. I Sem. II

Sr. No.	Name of Paper	Topics
1	Linear Algebra (CP-1175B)	Unit I
2	Measure And Integration (CP-1176B)	Unit I
3	General Topology (CP-1177B)	Unit I
4	Partial Differential Equations (CP-1178B)	Unit I
5	Numerical Analysis (CP-1179B)	Unit I

Syllabus for M. Sc. II Sem. IV

Sr. No.	Name of Paper	Topics
1	Field Theory (CP-1190D)	Unit I
2	Integral Equation (CP-1191D)	Unit I
3	Algebraic Number Theory (CP-1192D)	Unit I
4	Operational Research II(CP-1194D)	Unit I
5	Combinatorics (CP-1178B)	Unit I

Timetable

Date	Time	Class	Subject
08/04/2019	03:00 PM to 04: 00 PM	M.Sc. I	Linear Algebra (CP-1175B)
	03:00 PM to 04: 00 PM	M.Sc. II	Field Theory (CP-1190D)
09/04/2019		M.Sc. I	Measure And Integration (CP-1176B)
	03:00 PM to 04: 00 PM	M.Sc. II	Integral Equation (CP-1191D)
10/04/2019	03:00 PM to 04: 00 PM	M.Sc. I	General Topology (CP-1177B)
	03:00 PM to 04: 00 PM	M.Sc. II	Algebraic Number Theory (CP-1192D)
11/04/2019		M.Sc. I	Partial Differential Equations (CP-1178B)
	03:00 PM to 04: 00 PM	M.Sc. II	Operational Research II(CP-1194D)
12/04/2019	03:00 PM to 04: 00 PM	M.Sc. I	Numerical Analysis (CP-1179B)
	03:00 PM to 04: 00 PM	M.Sc. II	Combinatorics (CP-1198D)

Nature of question paper

Time:-1 Hours Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

STD. GO JUNE # 1964 80

(Prof. S. P. Patankar) HEAD

Department of Mathematics Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination: 2018-19 MATHEMATICS

Subject: Linear Algebra Date: 08/04/2019 Q. 1 Select the correct alterna	office formal and a second	Time: 03: 00 PM Total Marks: 30	
		7	[5]
 i) Let V denote the vector space vector space over R is 	e of n × n Skew symmetric	matrices, over R. T	hen dim V as a
A) n^2	B) $(n^2 + n)/2$	$n^2 + n$	D) $(n^2 - n)/2$
ii) If S is subset of V , $A(S) =$			2) (n 11)/2
A) A(L(S))	B) (L(S))	(C) A(S)	D) S
iii) T1, T2 and T3 are three map			-,0
$T1\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+1 \\ y \\ z \end{bmatrix}, T2\begin{bmatrix} x \\ y \\ z \end{bmatrix} = $ linear?	$\begin{bmatrix} xy \\ z \end{bmatrix}, \ T3 \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y \\ y+z \\ z+x \end{bmatrix}$	as Which of these	maps are
A) T1, T2, T3 B)	T1, T2 C) T	Г3 I	D) T1 , T3
iv) $dim(Hom(R,R)(R)) =$			
A) 2 B	-/		D) None
v] If T is a linear operator on ℝ² B) i) 3 C) iii) 2		0, 0) then rank of ii) 0 iv) 1	T=
 Q.2. Attempt any three of the feature. V is finite dimensional vector specified. Show that A (A(S)) is subspace of the feature. Show that A(S) = A(L(S)) for any the feature. Let W₁, W₂, be subspaces of V in the feature. 	pace of V then $A(A(W)) \approx W$ of \widehat{V} for any subset S of V . non empty subset of V.		[15]

- 4. Let W_1 , W_2 , be subspaces of V which is finite dimensional. Describe $A(W_1+W_2)$ in terms of $A(W_1)$ and $A(W_2)$
- 5. Let W_1 , W_2 , be subspaces of V which is finite dimensional. Describe $A(W_1 \cap W_2)$ in terms of $A(W_1)$ and $A(W_2)$

Q.3. Attempt any one of the following:

- 1.If T is homomorphism from U onto V with kernel W , Then V is isomorphic to U\W Conversely, If U is vector space and W is subspace of U then there is homomorphism of U onto U\W
- 2.If V is internal direct sum of U 1 , U 2 ,...U n ,Then prove that V is isomorphic to external direct sum of U 1 , U 2 ,...U n

Vivekanand College, Kolhapur (Autonomous)

MAG OF	0,	P	· (LYMIOHOHOM)	13)
M.Sc. (Part-I	Semester-II	Internal	Examination	.2019 10
Measure and Inte	gration		Zamination	.2010-19

Subject Measure 11	Internal Examination: 2018-19
Subject : Measure and Integration	Time: 03: 00 PM
Date: 09/04/2019	Total Marks: 30

Q. 1 Select the correct alternative for each of the following:

i. For 1 , q the conjugate of p, & any two positive numbers a & b

A)
$$ab \ge \frac{a^p}{p} + \frac{b^q}{q}$$
 B) $ab = \frac{a^p}{p} + \frac{b^q}{q}$

$$B) \ ab = \frac{a^p}{p} + \frac{b^q}{q}$$

C)
$$ab > \frac{a^p}{p} + \frac{b^q}{q}$$
 D) $ab \le \frac{a^p}{p} + \frac{b^q}{q}$

$$D) \ ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

ii. If
$$A_n = \left(\frac{-1}{n+1}, \frac{1}{n+1}\right)$$
 then $\bigcap_{n=1}^{\infty} A_n$ is _____
iii. A set F is F_{σ} set if it is _____

iii.

- a) Countable union of open sets
- b) Countable intersection of open sets
- c) Countable union of closed sets
- d) Countable intersection of closed sets

iv. Let
$$f(x) = |x|, x \in [-1, 1]$$
 then_____

a)
$$D^+f(0) = 1$$
 b) $D^-f(0) = 0$

b)
$$D^-f(0) = 0$$

c)
$$D^+f(0) = 0$$
 d) $D^-f(0) = 1$

$$d) D^- f(0) = 1$$

v. If
$$A_n = \left(\frac{-1}{n+1}, \frac{1}{n+1}\right)$$
 then $\bigcap_{n=1}^{\infty} A_n$ is _____

b) 0 c)
$$\infty$$
 d) $\frac{2}{n}$

$$d)\frac{2}{n}$$

Q.2. Attempt any three of the following:

[15]

[5]

- 1) Prove that $L^1(E)$ is normed linear space
- 2) If a function f is measurable then prove that the set $\{x|f(x)=c\}$ is measurable.

- 3) If E_1 is measurable set & $m^*(E_1\Delta E_2)=0$ then show that E_2 is measurable.
- **4)** If a function f is measurable then prove that the set $\{x|f(x)=c\}$ is measurable. for all c in \mathbb{R} .

Q.3. Attempt any one of the following:

- State & prove Holders inequality.
- 2) State & prove Lebesgue convergence theorem.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2018-19) Subject: General Topology

D. deleta Topology	Total Marks: 30
Date: 10/04/2019	Time:03:00 PM to 04:00 PM
Q.1) Choose the correct alternative for	the following question [05]
1) Out of the followingdefine	es a topology on $X = \{a, b\}$
a) {\pu, \{a\}, \{\pu\}\} b) \{X, \{a\}, \{\pu\}	(V D) (A (S) (A) (A (V)
2) In a topology, every open set can be e	expressed as
a) union of some member of subbase	S
b) intersection of bases	
c) union of intersection of some mem	ber of subbases
d) intersection of union of some mem	iber of subbase
3) Limit point of a subset of $\{1, \frac{1}{2}, \frac{1}{3}, \dots$	} of R is
a) 1 b) ∞ c)	0 d) 2
4) A is closed if and only if	<u>, </u>
a) $\overline{A} = A$ b) $\overline{A} = \emptyset$ 5) Boundary point set of a set of integer \overline{A}	c) $A \subset A$ d) none of these
a) N b) Z	` -
Q.2) Attempt any three	c) R d) Q
c-)pt any three	[15]
1) If X be an infinite set and $\tau = \{\emptyset\} \cup \{\emptyset\}$	$A \subseteq X A^C$ is countable} then show that τ is
topology on X .	$t = x / x$ is countable then show that τ is
2) Define the following terms:	
a) Limit point b) closure of set	N::
3) Show that A U D(A) is closed set	c) interior set d) neighbourhood
4) Let (X \(\tau \) be a topological space and A	DC V d 1 .
4) Let (X, τ) be a topological space and A a) $D(A \cup B) = D(A) \cup D(B)$	$A, B \subseteq X$, then show that
b) if $A \subseteq B$, then $D(A) \subseteq D(B)$	
Q.3) Attempt any One	[10
1) Prove that let V he	
1) Prove that let X be any non – empty se	et and B be family of some subset of τ .
Then B is base for τ on X if and only	if
a) $X = \bigcup \{B_i : B_i \in B\}$	
$b) \forall B_1, B_2 \in B, \forall x \in B_1 \cap B_2 \exists B_3 \in B_2 \cap B_2$	B such that $x \in B_2 \subseteq B_1 \cap B_2$
2) Consider the topology $\tau = \{ \emptyset, \{a\}, \{b, c\}, \{c\}, \{c\}, \{c\}, \{c\}, \{c\}, \{c\}, \{c\},$	$\{X\}\ $ on $X = \{a, b, c\}\ $ and $V = \{\emptyset, \{r\}, \}$
$\{p\}, \{q\}, Y\} \text{ on } Y = \{p, q, r\}.$	
Which of the following mapping is a) co	ontinuous b) open c) closed
d)homeomorphism	
$i) f(a) \rightarrow r, f(b) \rightarrow r, f(c) \rightarrow r$	
ii) $g(a) \rightarrow p, g(b) \rightarrow q, g(c) \rightarrow r$	
$iii) \ h(a) \to r, h(b) \to p, h(c) \to q$	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2018-19) Partial Differential Equations

Time: 03:00 PM to 04:00 PM Total Marks: 30

Date:11/04/2019

Q.1) Choose the correct alternative for the following question. [05]

1) I. The normals to the two surfaces represented by the equations Pdx+Qdy+Rdz=0 & Pp+Qq=R are...

a) collinear b) Orthogonal c) Parellel d) intersects at acute angle

2) The equation Ruxx+Suxy+Tuyy+g=0 is parabolic if...

a) $S^2 - 4RT < 0$ b) $S^2 - 4RT > 0$ c) $S^2 - 4RT = 0$ d) None of these

3) The complete integral of $z=px+qy+\sqrt{pq}$ is

a) z=a+b+ab b) $z=ax+by+\sqrt{pq}$ c) z=c d) none of these

4) Which of the following is not a Pffafian differential equation a) tdx+xdt=0 b) xdx+ydy-zdz=0 c) xdx+zdy=0 d) xdx+ydy+zdz=0

5) The complete integral of z=px+qy+pq is a) z=a+b+ab b) z=ax+by+ab c) z=c d) none of these

Q.2) Attempt any three

[15]

- 1) Find the general solution of $z(xp yq) = y^2 x^2$.
- 2) Form partial differential equation from $z^2(1+a^3) = 8(x+ay+b)^3$
- 3) Find the general solution of $p + q = 2\sqrt{z}$.
- 4) Form partial differential equation from the relation $F(x-y, x-\sqrt{z})=0$

Q.3) Attempt any One

[10]

1) Solve Pfaffian differntial equation

$$(6x + yz)dx + (xz - 2y)dy + (xy + 2z)dz = 0$$

2) If X = (P,Q,R) is a vector such that X curl $X = 0 \& \mu$ is an arbitrary

differentiable of x, y, z then prove that $\mu \overline{X}$ curl $\mu \overline{X} = 0$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination (2018-19)

Subject : Numerical Analysis	Total Marks: 30	
Date: 12/04/2019	Time: 03:00PM t	o 04:00PN
Q.1) Choose the correct alternative for th	e following question.	[05]

1) The solution of system of equations $x_1 + x_2 + x_3 = 1$, $4x_1 + 3x_2 - x_3 = 6$, $3x_{1} + 5x_{2} + 3x_{3} = 4$ by using Crout's method are ----

A)
$$x_1 = 1$$
, $x_2 = \frac{3}{2}$, $x_3 = \frac{1}{2}$ B) $x_1 = 1$, $x_2 = \frac{1}{2}$, $x_3 = \frac{-1}{2}$ C) $x_1 = \frac{1}{2}$, $x_2 = 1$, $x_3 = \frac{-1}{2}$ D) $x_1 = \frac{-1}{2}$, $x_2 = \frac{1}{2}$, $x_3 = 1$

- 2) The Jacobi 's method is a method of solving matrix equation on a matrix that has no zeros along -----
 - A) Leading diagonal
 - B) Last column
 - C) Last row
 - D) Non leading diagonal
- 3) The quadratic factor of polynomial $x^4 + x^3 + 2x^2 + x + 1$, where $p_0 = 0.5$ and $q_0 = 0.5$ is -----

A)
$$x^2 + 2x + 9$$
 B) $x^2 + (1.0375)x + (0.5563)$
C) $x^2 + (0.5563)x + (1.0375)$ D) $x^2 + (1.9413)x + (1.9542)$

4) In Bairstow method $\Delta p = ----$

A)
$$\Delta p = \frac{b_n c_{n-2} + b_{n-1} (b_{n-1} - c_{n-1})}{c^2_{n-2} + c_{n-3} (b_{n-1} - c_{n-1})}$$
 B) $\Delta p = \frac{b_{n-2} c_n + b_{n-1} (b_n - c_n)}{c^2_{n-2} + c_{n-3} (b_n - c_n)}$ C) $\Delta p = \frac{b_n c_n + b_{n-1} (b_{n-2} - c_{n-2})}{c^2_n + c_{n-3} (b_{n-1} - c_{n-1})}$ D) $\Delta p = \frac{b_{n-1} c_{n-2} - b_n c_{n-3}}{c^2_{n-2} + c_{n-3} (b_{n-1} - c_{n-1})}$ 5). An iterative method is said to be of order p, if p is largest positive real

number for which there exist a finite constant $C \neq 0$ such that ----

A)
$$|\epsilon_{k+1}| \le c |\epsilon_k|^p$$
 B) $|\epsilon_k| \le c |\epsilon_{k+1}|^p$
C) $|\epsilon_k| \le c |\epsilon_k|^p$ D) $|\epsilon_{k+1}| \le c |\epsilon_k|^{p-1}$

Q.2) Attempt any three

[15]

- 1) Determine the rate of convergence of Regula Falsi method.
- 2) Derive Gauss Legendre integration method for n=1
- 3) Estimate the eigen value of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ by using Gerschgorin theorem and Brauer theorem.

4) Explain General form of linear multistep method

Q.3) Attempt any One

- State and prove Brauer theorem.
- Derive Trapezoidal rule by using Newton cotes formula. Find error term also.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination: 2018-19 MATHEMATICS

Subject : Field Theory Time: 03: 00 PM-Date: 08/04/2019 Total Marks: 30				
Q. 1 Select the correct altern i. e and π are elem	ative for each of the ents over Q		[5]	
A) Transcendental	B) Algebraic	C) Irreducible	D) Reducible	
ii. Polynomial of degree on	ne is always			
A) Inseparable	B) Separable	C) Monic	D) Simple	
iii. If $f(x)$ is of degree 3,	Then $f(x)$ has Roo	ot.		
A) Complex	B) Unique	C) Distinct	D) Real	
iv. Any subgroup and any o	quotient group of a	group is solvable.		
A)Solvable	B) Normal	C) Separable	D) None	
v. If $F \subseteq K \subseteq L$ are fields. I	f a ∈ L be algebraic ov	ver K and K is an algeb	The second secon	
F. Then, a is				
A) Algebraic over K	B) Algebraic Over	F C) Algebraic	D) Separable	
Q.2. Attempt any three of the 1.If $F \subseteq K$ be fields, $p(x)$ a m Then prove that, there exists	onic irreducible polynor	mial over F and a and b ∈ 1 → F(b) such that	[15]	
j(a) = b and $j(s) = s$ for all	lls∈ F.			
2.Prove that an algebraic ext	tension E of F is finitely	generated over F if and o	nly iff E is a finite	
extension of F.			, = 15 a	
 3. Find the smallest extension 4. If F ⊆ E be fields such that between F and E. 	on of Q having a root of t [E : F] is prime numbe	$x^4 - 2 \in Q[x]$ r. Prove that there are no	o fields property	
Q.3. Attempt any one of the form 1.If $F \subseteq K \subseteq L$ are field and $[L : F]$	ollowing: is finite , Then prove that	[L:K] and [K:F] are diviso	[10]	
2.A. Let $F \subseteq K$ be field and $a \in K$ irreducible polynomial $p(x)$ over divides $f(x)$ in $F[x]$	be algebraic over F. Then p	prove that there exist a unio	que monic	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV

Internal Examination: 2018-19

C-L-T- ID .	
Sub: Integral Equations	Date: 09/04/2019
Total Marks: 30	
	Time: 03:00pm-04:00pm

Q.1) Choose the correct alternative for the following question 1) The type of integral equation $g(s) = f(s) + \lambda \int K(s,t)g(t)dt \ b \ a$ is	. [05]
a) Volterra integral equation of 1st kind	
b) Fredholm integral equation of 1st kind	
c) Homogeneous Fredholm integral equation of 2nd kind	
d) Non-homogeneous Fredholm integral equation of 2nd kind	
2) The nomogeneous Fredholm integral equation has trivial solution if	
a) $D(\lambda) = 0$ b) $D(\lambda) \neq 0$ c) $D(\lambda)$ does not exist d) non	o o f 41
of the eigen values of non-zero symmetric kernel are	or thes
a) real b) zero c) only imaginary d) none of these	
4) If $\{\phi k\}$ is orthonormal set, then $\langle \phi i, \phi i \rangle =$ for all i . a) 0 b) 1 c) -1 d) ∞	
5) A symmetric kernel possesses eigen value.	
a) only one b) at-least one c) at-most one d) none of these	
Q.2) Attempt any three	[15]
Convert the following initial value problem to an integral equation.	[15]
y'' + y = cosx, y(0) = 0, y'(0) = -1	
Prove that eigen functions $g(s)$ and $\psi(s)$ corresponding to distinct eigen v	1 .
and λ_2 respectively of the homogeneous integral equation $g(s) = \lambda \int K(s,t)$ and its transpose are orthogonal.	g(t) dt

3) Convert the following boundary value problem to an integral equation. y'' + xy = 1, $y(0) = 0, y(1) = 1, 0 \le x \le 1$

4) Find the eigen values and eigen functions of the homogeneous integral equation $g(s) = \lambda \int_0^1 (6s - 2t)g(t)dt$ Q.3) Attempt any One

[10] 1) Describe the procedure of finding eigen values and eigen functions for the homogeneous Fredholm integral equation of 2nd kind with separable kernel.

2) Solve the integral equation $g(s) = f(s) + \lambda \int_0^1 (1 - 3st)g(t)dt$ by discussing all possible cases.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2018-19) Algebraic Number Theory

Time: 3:00PM-4:00PM Date:10/04/2019	Total Marks: 30
Q.1) Choose the correct alternation 1) The element $a \models 0 \in R$, the commutative ring	ve for the following question. [05]
(a) $ab = 0, b \in R$ and $b = 0$	(b) $ab = 0$, $b \in R$ and $b \not= 0$
(c) $ab \models 0$, $b \in R$ and $b = 0$	(d) $ab \models 0$, $b \in R$ and $b \models 0$
2)E is set of integers under ordinary addition a (a) Commutative ring (b) Integral don	and multiplication, then E is a ring, E is also a
(c) Both (a) and (b)	(d) None of these
3) The homomorphism ϕ of rings R into R is an	
(a) $I(\phi) = \{0\}$ (b) $I(\phi) = R$ (c) $I(\phi)$	= R (d) None of these
4)Let p and q are non-zero polynomials in $R[t]$	
(a) $\partial pq = \partial p\partial q$ (b) $\partial pq = \partial p - \partial q$	(c) $\partial pq = \partial p + \partial q$ (d) $\partial pq = \partial p(\partial q)^2$
5)Let R be a ring And X and Y are ideals of R. (a) X + Y is ideal	
(c) Both (a) and (b) is true	(d) None of the above
Q.2) Attempt any three	[15]
1) Let $M = M_1 \oplus M_2$ then prove that	$\frac{M}{M_{\star}} \cong M_2 \text{ and } \frac{M}{M_{\star}} \cong M_1$
2) With usual notations prove that The polynomial p_{α}	Field polynomial f_{α} is a power of minimal
3) Show that the ring of integer β is a s 4) Show that the coefficient of the field	subring of the field of algebraic number A. d polynomial are rational numbers so that
$f_{\alpha}(t) \in Q(t).$	
1) Show that a complex number θ is an a	[10] algebraic integer if and only if the additive
group generated by all powers $1, \theta, \theta^2$	

2) Let d be a square free rational integer then the integer if $Q(\sqrt{d})$ are

a) $Z(\sqrt{d})$ if $d \not\equiv 1 \pmod{4}$ b) $Z\left(\frac{1}{2} + \frac{1}{2}\sqrt{d}\right)$ if $d \equiv 1 \pmod{4}$.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2018-19) Operational Research-II

Date: 11/04/2019		Total Marks: 30
Q.1) Choose the correct alternative fo	r the following q	uestion. [05]
 i) In Retrogressive failure, probability of fa an item. 	nilure with th	ne increase in the life of
A) increases B) Remains constant ii) The problem of replacement is not concern. A) item that deteriorate graphically B) items that fail suddenly	t C) Decreases erned about the	D) None of these
C) determination of optimum replacemen	t interval	
D) maintenance of an item to work out pr	rofitably	
iii) In dummy activity in a project network a	ilways has a d	uration
A) one B) two	C) zero	D) Three
iv) In model I(b), minimum average invento	ory cost is	2) 111100
A) $\sqrt{\frac{2C_1C_3q}{T}}$ B) $\sqrt{\frac{2C_1C_3D}{T}}$	$C)\sqrt{2C_1C_3D}$	
v) occurs when a waiting customer	r leaves the queue du	e to impatience.
A) Reneging B) Balking	C) Jockeying	
Q.2) Attempt any three		[15]
1) Explain the types of inventory model?		
2) An aircraft uses rivets at an approximately	y constant rate of 500	00 kg per year. The
rivets cost Rs. 20 per kg and the company	personnel estimate t	hat it costs Rs. 200 to
place an order, and the carrying cost of in-	ventory is 10% per y	ear
a) How frequently should be ordered for r	ivets be placed and v	what quantities should be

- b) If the actual costs are Rs. 500 to place an order and 15% for carrying cost, the optimum policy would change. How much is the company losing per year because of imperfect cost information?
- 3) In each of the following cases, stock is replenishment instantaneously and no

ordered for?

shortage allowed. Find the economic lot size, the associated total cost and length of time between two orders

a)
$$C_3 = Rs. 100$$
, $C_1 = Rs 0.05$, $R = 30 units/year$

b)
$$C_3 = Rs. 100, C_1 = Rs 0.01, R = 40 units/year$$

c)
$$C_3 = Rs. 100, C_1 = Rs 0.04 R = 20 units/ year$$

- 4) Define the following terms
 - a) Activity
- b) Dummy activity
- c) critical path

- d) critical activity
- e) event

Q.3) Attempt any One

- i) Discuss the policy of replacement of items whose maintenance cost increases with time but the value of money remains constant.
- ii) Show that the distribution of the number of births up to time T in a simple birth process follows the Poisson law

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination:2018-19 MATHEMATICS

Subject: Combinatorics Date: 12/4/2019 Time: 03: 00 PM-04:0 Total Marks:	
Q. 1 Select the correct alternative for each of the following: 1. The weight of permutation $(1,3,2,4) \in S_4$ is	[5]
a) 2 b) 4 c) 6 d) 8	
II. The number of derangements of (1,2,3) is/are	
a) 1 b) 2 c) 3 d) none of these	
III. The number of circular permutation of 6 objects is	
a) 120 b) 24 c) 6 d) 5	
IV. The Ramsey Number $R(3,3) = $	
a) 6 b) 5 c) 4 d) 0	
V. The weight of permutation $(1,3,2,4) \in S_4$ is	
a) 2 b) 4 c) 6 d) 8	
Q.2. Attempt any three of the following: 1) Compute the number of square free integers not exceeding the given integer'n'. 2) Find a cycle index of dihedral group on symmetries of square 3) In how many ways'n'boys & 'n' girls be seated in row of 2n chairs if the two sexes must be alternate.	[15]
There are n married couples at a party each person shakes hands other	
than her or his spouse . Find the total number of handshakes.	
Q.3. Attempt any one of the following: 1) How many integers between 1 & 1000 (inclusive) are not divisible	[10]
by 2,3,5 or 7?	
2) Find a cycle index of dihedral group on symmetries of square	

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। - शिक्षणमहर्षी हाँ. बापूजी साळुंखे 36593 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT Supervisor Subject: Numerical Analysis Suppliment No. : Test/Tutorial No .: Internal Exam Roll No. : 1203 Class : MSCI 91. 1) f (see) 4) EICAde) Intermediate value theorem 5)

```
92.
1>
    Given equation is.
        F(\alpha) = \cos \alpha - \alpha \cdot e^{\alpha} = 0
    Initial approximations are x0=0 and x1=1
        f(x_0) = f(0) = \pm, f(x_1) = f(1) = -2.1780
         F(\infty). F(\infty) < 0
        -: Root lies beth (0.1)
     By secant method we have,
      xx+1 - xx - (xx - xx-1), f(xx)
                   E(x14) - E(x14-1)
          = xkf(xk)-xk.f(xk-1)-xk.f(xk)+xk-1.f(xk)
                   ECOST & COOK-1)
          = ock-1. E(xxx) = xxx E(xxx-1)
  XK+1
                   もくなってくるよくスペイン
  i) For 1 = 1
    x - x_0 \cdot F(x_1) = x_1 \cdot F(x_0)
              f (24) = PESCO ITE
         - (0).(-2.1780)-(1)(1)
              -2.1780 -1
              - 3.1780
      = 0.3147.
  : F(x) - 0.5198
 ii) for K=2
    xz - xz Fex
      x_3 = x_1 \cdot f(x_2) - x_2 \cdot f(x_1)
f(x_2) - f(x_1)
            (1) (0.5198) - (0.3147) (-2.1780)
                0.5198 + 2.1780
                 2.6978
```

```
DC2 = 0.4467.
                               f(\alpha_3) = 6.2036
                      iii) For K= 3
                                 x_4 = x_2 \cdot f(x_3) - x_3 \cdot f(x_2)
f(x_3) - f(x_2)
                                                 = (0.3147) \cdot (0.2036) - (0.4467) (0.5198)
                                                                                                0.2036-0.5198
                                                                 -0.1681
                                       = 0.5316
                                 F(\infty 4) = -0.0426
                                                                                                                                         विकानंद क्रि
                     iv) For K = 4 /8
                                  x_5 = x_3 \cdot f(x_4) = x_4 \cdot f(x_3)
f(x_4) = f(x_3) = x_4 \cdot f(x_
                                                       = (0.467) (40.0426) - (0.5316) (0.2036)
                                                                                                 -0.0426 002036
                                                                              -0.0190 -0.082
                                                                                                       -0.2462
                          x4 = 0.5167.
                       .: Approximate soin upto four iterations is 0.8167
                  Given equation is polynomial is
2)
                                  P_4(x) = x4 + x^2_1 - 2x^2 + x + 1
                     Initial approxi mations are
                                  Po = 0.5 and 90 = 0.5.
                         How ist iteration is.
```

```
2
 - Po = -0-5
 - 90 = -0·5
                           -0.25
                                  -0.625 0125
                    -0.5
                           -0.5
                                  -0.25.0.625
                           1.25
                     0.5
                                   0.125 0.5 z by
- Po = -0.5
                              0
                                  -0.375
- 90 = -0.5
                    -0.5
                            -0.5
                              0.75 -0.25 = C3
                       0
 Now,
    DP = - (bn (n-3 - bn-1 Cn-2)
             Cn-2 - En-3 (Cn-1 - bn-1)
         - (b4 (1 - b3 (2)
             c_2^2 - c_1(c_3 - b_3)
           [(0.5)(0) == (0.79)(0.75)]
            (0-75)2-(0)(-0-25-0.125)
            0.0938
               0.5625
      = 0.1668
: P1 = DP + P0
       = 6.1668 + 0.5
   P1 = 0.6668.
\Delta q = -(b_{n-1}(c_{n-1} - b_{n-1}) - b_n \cdot c_{n-2})
          (n-2 - (n-3 ((n-1 - bn-1)
     = -(b_3(c_3-b_3)-b_4(c_2))
           (2^2 - (((3 - 63)
          (0.125 + 0.25 - 0.125) - 0.5.(0.75)
(0.75)^2 - 0+(3-b3)
          0.0469+0.3750
Aq. = 0.75.
: 91 = Ago + 90
```

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। – शिक्षणमहर्षी हॉ. बापूजी साळुंखे 36612 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature

SUPPLIMENT

Suppliment No.: 1

Roll No. : 1203

Class : MSC - I

Supervisor

Subject: NA.

Test / Tutorial No.:

Div.:

91 = 0.75+0.5

1.25.

4.

17

: $L_1(x) = 3x_5$: $L(x) = x_3-11$

To = 2.

By Newton Raphson method

*= D For

```
33
             12
            0.0833 2.75
   201 =
 For
     K = 1
  x_2 = 2x_1^3 + 17
          3 (27)
         2 (2.75)3+17
            2 (2-75)2
         58.5938
          15.1250
  x_2 = 3.8740
                   वित्रकानंद कि
 For 1 = 2
     = 2 203 +17
  IZ
           3(\alpha)^2
         2 (3.8740) 417
             3(3.8740)2
           133.2810.
            45.623 6
      = 2.9602
  for k=3
   x_4 = 2x^3 + 17
3(x_3)^2
         2 (2.9602)3+17
              3(2.9602)2
           68.8792
             26.2884
      x4 = 2.6201
.. Approximate Solution
                            is
                                 2. 8201.
```


।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। - शिक्षणमहर्षी डॉ. बापूजी सार्खुखे 36505 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT of Supervisor Subject: Suppliment No.: 2 Test / Tutorial No.: Roll No. : (203 Div. : : MSC I (Maths) EK+1 = A. ER Egn D becomes min Ext1 = (.8/2.8/2-1 Comparing powers of EK 1 + 5 The largest value OF PIS

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

– शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36430

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

S	U	P	P	L	1	M	E	N	T

Suppliment No. :. \

Roll No. : 2219

Class : M.SC II

Signature of Supervisor

Subject: Lattice theory

Test / Tutorial No.:

Div.:

0-1.	
0	False
	In antichain no element is comparable
	antidain is not lattice.
2)	false True
X	Every lattice is poset but converse need not be t
7	every semi lattice is lattice & Poset is semi lattice
3)	False True
	to is lattice to is lattice , so it is also sublattice
W	True
	a n (a y (a n (2 y b 3)) = a n (a) = a
	b
(2	True
	length of chain is element in chain minus 1.
	Tendin or Civili 12 Girman
65	7

0.2.	
- 0	Let A be any set.
	Let PCAD be the power not of A.
	clearly, PCA) is non empty set.
	let, B, c & P(A) be any element in PCA)
7	claim - PCAD is lattice
7	case 1] - Of B = C, then
	Sup ? B, c 3 = BUC = C exist
	inf 28, c3 = Bnc = B exist
	In this case superaid & inf 38, c3 exist
	: PCA) is lattice.
	case 27 - 27 c = 8 then
	Sup 28, c3 = 8 exists
	inf 28, c3 = c eist
	In this case PCB) is lattice
	case 37 . IF 8 \$ C & 8 then
	i) Sq Let Bac # \$ 3 ac Bac
	Sun 28, C3 = BUC
	$Sup \stackrel{?}{\sim} B_1 c^3 = Bvc$ $inf \stackrel{?}{\sim} B_1 c^3 = a$
	ii) OF BAC = \$ then
	Sun 3 Rici = RUC
C	54p 2B1C3 = BUC inf 2B1C3 = \$
E	1
	· Paulor Ret at any sat in latting unlan s
	inclusion.
	MICIOSION.

2)	Let < P. 5 ? be a poset satisfying ACC.
2	Let 80 E P be any element
	If the is maximal element the we are done
	If the is not maximal element then 3 xiEP
	S.F. 20 521
	If & is maximal element then we are done
	if not then 3 82EP , S.t. 80581582
-	Continuing this process we get incereasing chain
	satisfying ACC
	j.e. 80581582 380680415
	This chain satisfying Acc then it must be
	terminates 00
	3 iE IN S.t. & = 2in =
	As no element in this chain is greater than the
	i.e. Ri covers all the element. then is
-	maximal element then we are done.
	IF not then 3 yo & P, yo + zi, sit.
	2: 6 40
-	If yo is maximal element then we are done
	OF not then 3 yr, s.t &i Eyo Ey,
	Continuing this way we get increasing chain
	satisfying Acc
	1.6. Bil Holdi 2 Hulduti g
	This chain satisfying Acc then it must be
	terminates, 3 je mm 15.t.
	9i= 9in =
05	It is cover all the element then it
	is abbee pointy.
-	Do same beocess for all bossiple chain.
	every chain is satisfying Acc has upper bour
	by zorn's lemma. It has marinal element.

3)	Let I be non empty subset of L
	$\phi \neq \mathcal{I} \subseteq \mathcal{L}$
	claim - Let abel, & abet
	No know,
	$a \leq a \vee b$
	=> a = ancanp) e ?
	3 a e ? - 0
	As, b z avb
	b=bncanb) EI
	⇒ b∈2 - ©
	G & G most 2 (2)
	Comme Co.
	Conversly, suppose abel, ander = aber
	We know,
	a=avCanb) EI
	3 and $\in \mathcal{I}$
-	i. I is sublattice of L
	को स्थापन
	let le L, xet be any element
	81258 P3811
	73 86 => auses
	=> I is lattice of L
-	
	Total Annual Calle Annual Calle
	The second section of the section
-4	

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36453

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SU	P	P	L	I	M	E	N	T
\sim		ш .	Description	#		District		

Suppliment No. : 2

Roll No.

: 2219

Class

: M.SCI

Signature of Supervisor

Subject: LT

Test / Tutorial No.:

Div.:

```
0.3.
      Let LL, <> be lattice.
       => by def of lattice sup # & inf # exist
       by We use method of induction on no. of elemen
       If H= Eaib3 then
       Sup Earl & inf Earls exists
      claim - Sup H = t
        then tis upper of bound of H
              be any upper bound of H
               is upper bound of a,b At but
         is appea bound of
```

≥ × < ₹'
As this upper bound of H but this
upper bound of k,c
⇒ t ≤ t'
f = H = H
Now , suppose sup H exist
$\int c_1 dx + \frac{1}{2} \int c_1 dx + \frac{1}{2} \int c_2 dx + $
$1e4 H = 2a_1 q_2 , a_k q_{kH} 3$
by hypothesis sup 3 ax, 9x+13 exist
and was sale and was
Sup H= Ea, 1921 - 1, 9x-1, Sup 39x, 9x+133 exist
by hypothesis sup H exists
by duality principle int H also exist.
. Sup H & inf H exist for any non empty subset
H of L
conversly, Suppose sup H & Inf H exist for any
non empty subset to t
In particular
H= 30163
Sup Ea, b3 & inf Ea, b3 exist.
As as are any orbitrary element in L
As only one any orbitropy element in L
The state of the s

6.2.	
· W	let I pe jattice & a pe conducence relation on
	L= 2 [a]e a E L 3
	0
	We define join & meet by
	oldno] = old] 1 oso] (i
	ii) [a]a v [b]a = [avb]a
	claim: - 40 is lattice
	1) I gewhofent heobesta
	Let [6]0 E L
	oldnes = olds nolds
	(Stall 1)
	oldres = olds v olds
	- 2630
	2+ satisfies idempotent property
	ii) Associativity proposty
	Let Eagle, Ebgo L be any element
	0[410] = 0[4210[62
	o[pnd] =
	ospin old =
	o[dup] = o[d] vo[p]
	o[ovd] =
	0[p]v o[d] =
(ps	It satisfies associativity
	7
/	iii) Commutative property
	let Eggo, [b]o, Ec]o EL be any element

	[a]an 3[b]an Ec]a] = [a]an 2[bnc]a]
	= [anbnc]a
7	= Ecanboncja
	= [anb]o n [c]o
	o[22 n € o[63 n o[63 { =
	72
-	11 me pans = Eraza v Ehzaž v Ecja
	It satisfies commativity
3	in) the Approchause hooberth
	Let solo, Eblac L be any element
	Ealar 2 5 no [0] = Eald 2 v of [0]
S	= { 200 € an € 30 €
	= 3(qnq)vb3@
	= 50p
	1/27 me brone
8	o[0] = {0[0] \(\text{o} \) \(\text{o} \) \(\text{o} \)
-	
	by i iii iii iii i La is lattice
1	, (S is jaine
1	
19-	
13	
	NAMA C
	ESTD I
	1964 Ph
*	100 A 415 O