Date: 02/09/2019

Vivekanand College, Kolhapur (Autonomous) Department of Mathematics M. Sc. I Sem. I and M.Sc. II Sem III Internal Examination 2019-20

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on as given below timetable. The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Timetable

Date and Time	Time	Class	Subject
16/09/2019	03:00 PM to 04: 00 PM	M.Sc. I	Algebra
	03:00 PM to 04: 00 PM	M.Sc. II	Functional Analysis
17/09/2019	03:00 PM to 04: 00 PM	M.Sc. I	Advanced Calculus
	03:00 PM to 04: 00 PM	M.Sc. II	Advanced Discrete Mathematics
18/09/2019	03:00 PM to 04: 00 PM	M.Sc. I	Complex analysis
	03:00 PM to 04: 00 PM	M.Sc. II	Lattice Theory
19/09/2019	03:00 PM to 04: 00 PM	M.Sc. I	Ordinary Differential Equation
	03:00 PM to 04: 00 PM	M.Sc. II	Number theory
20/09/2019	03:00 PM to 04: 00 PM	M.Sc. I	Classical Mechanics
	03:00 PM to 04: 00 PM	M.Sc. II	Operational Research -I

Syllabus for M. Sc. I Sem. I

Sr. No.	Name of Paper	Topics
1	CP-1170A : Algebra	Unit I
2	CP-1171A: Advanced Calculus	Unit I
3	CP-1172A: Complex analysis	Unit I
4	CP-1173A: Ordinary Differential Equation	Unit I
5	CP-1174A: Classical Mechanics	Unit I

Syllabus for M. Sc. II Sem. III

Sr. No.	Name of Paper	Topics
1	CP-1180C: Functional Analysis	Unit I
2	CP-1181C: Advanced Discrete Mathematics	Unit I
3	CP-1182C : Number theory	Unit I
4	CP-1184C : Operational Research -I	Unit I
5	CP-1185C :Lattice Theory	Unit I

Nature of question paper

Time:-1 Hours Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

ESTD. CO. JUNE 1964

(Prof. S. P. Patankar)

Department of Mathematics Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous)

M.Sc. I Semester-I Internal Examination: 2019-20

MATHEMATICS

Sub: Algebra (CP-1170A) Date:16/09/2019	Time: 03:00PM -04:00PM Total Marks:30
Q1) Select the correct alternatives	(5
1] i) Every permutation is one - one function. ii) Every o	one-one function is permutation.
a) (ii) is true. b) (i) is true. c) both statement are true. d)) both statement are false.
2] How many proper subgroups does the group $\mathbb{Z}\oplus\mathbb{Z}$ hav	ve?
a) 1 b) 2 c) 3 d) infinitely max	ny.
3] In a group of order 15 the number of subgroups of o a) 3 b) 5 c) 1 d) 2 4] with usual notation which is true?	order 3 is
a) $\{\sigma_0\}$, $\{\sigma_0, \sigma_1, \sigma_2\}$ are not subgroup of S_3 .	
b) $\{\sigma_0, \mu_1\}$, $\{\sigma_0, \mu_2\}$, $\{\sigma_0, \mu_3\}$ ae only subgroups of S_3 .	
c) $\{\sigma_0, \sigma_1, \sigma_2\}, \{\sigma_0, \mu_1\}$ are subgroup of S ₃ .	
d) S ₃ has no subgroup of order 3	
5] Order of A ₅ is	
a) 60 b) 120 c) 5 d) 5!	
Q2) Solve any THREE of the following.	(15
 Prove that every permutation σ of a finite set A is a pro Define commutator subgroup of group G. Show that G subgroup is {e}. Show that for n ≥ 3, Subgroup generated by 3 – cycle of Define index of subgroup. Find index of An in Sn. Sho Solve any ONE of the following. 	is abelian if and only if commutato of A_n is A_n .
1] If H and K are subgroups of G and H* and K* normal subgroup	s of H and K respectively, Then show t
that i) $H^*(H\cap K^*$) is normal subgroup of $H^*(H\cap K)$	
ii)K*(H* \cap K) is normal subgroup of K*(H \cap K)	
iii) H*(H \cap K)/H*(H \cap K*) \cong K*(H \cap K)/ K*(H* \cap K) \cong (H	$\cap K)/\left[(H^*\cap K)(H\cap K^*)\right]$
2] State and prove Caley's theorem.	

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-I) Semester-I Internal Examination: 2019-20 Subject : Advanced Calculus Date and Time: 17/09/2019 03:00pm onwards Total Marks: 30 O. 1 Select the correct alternative for each of the following: [5] he series $\sum_{n=1}^{\infty} a_n sin(nx)$ converges uniformly on $\mathbb R$ if A) $\sum_{n=1}^{\infty} a_n \ converges$ B) $\sum_{n=1}^{\infty} |a_n| \ converges$ C) $\sum_{n=1}^{\infty} \sin(nx) \ converges$ D) $\sum_{n=1}^{\infty} |\sin(nx)| \ converges$. Radius of convergence for the seris $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ is _____ C) 1 D) series always diverges. If \overline{f} is linear then $\overline{f'}(\overline{c}; \overline{u}) = \underline{\hspace{1cm}}$ A) 0 B) $\overline{f}(\overline{u})$ C) $\overline{f}(\overline{c})$ D) $\overline{f'}(\overline{u})$ iii. iv. Stokes theorem relates a surface integral to A) Volume integral B) Line integral C) Vector integral D) Real integral If $\alpha_1 v 1 + \alpha_2 v 2 + ... + \alpha_n v n = 0$, where v 1, v 2, ..., v n are linearly independent v. vectors in a vector space V(F), then i) i=0 for all i=1,2, ..., n ii) $i\neq 0$ for all i=1,2,...,niv) i≠0 for at least one i iii) i=0 for at least one i Q.2. Attempt any three of the following: [15] 1) State & prove Green's theorem for plane region bounded by piecewise smooth Jordon curve. 2) Evaluate $\iint e^{\frac{y-x}{y+x}} dxdy$ over triangle bounded by lines x + y = 2& two cordinate axes x & y. 3) Let \bar{f} be a vector field given by $\bar{f}(x,y) = \sqrt{y}i + (x^3 + y)j$ where $(x,y) \in \mathbb{R}^{2}$. $y \ge 0$ obtain the integral of \bar{f} from (0,0) to (1,1) along the path $\alpha(t) = ti + tj$ 4) Let f be a double sequence. $\&\lim_{p,q\to\infty}f(p,q)=a$. Assume that $\lim_{q\to\infty}f(p,q)$ exist for each fixed integer p. Prove that the iterated limit, $\lim_{p\to\infty} (\lim_{q\to\infty} f(p,q))$ also exist &has same value a.

Q.3. Attempt any one of the following:

[10]

1) If $\sum a_n(z-z_0)^n$ coverges for each $z \in B(z_0; r)$. Prove that the function

$$\mathrm{f}(\mathrm{z}) = \sum_{n=0}^{\infty} a_n (z-z_0)^n \text{ has derivative } f'(\mathrm{z}) = \sum_{n=1}^{\infty} \mathrm{na_n} (\mathrm{z}-\mathrm{z_0})^{n-1}$$

& series for f'(z) has same radius of convergence r.

[10]

2) If $\{M_n\}$ be a sequence of non – negative real numbers such that $0 \le |f_n(x)| \le M_n$

 $\forall n \in \mathbb{N} \& \forall x \in S$. Prove that $\sum_{i=1}^{n} f_n$ converges uniformly on S if $\sum M_n$ converges.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination : 2019-20

Department of mathematics

Tin	bject : Complex ne: 03: 00 PM-0	4:00pm					Date:18/09/2019 Total Marks: 3
Q.		ect alternative fo $y^2 + i2xy$ and $g(z)$				hen in the	[5]
	A) f is analytic	and g is not analy			analytic and analytic and	-	rtic
	ii) If C is the cir	z - a = r then	$\int_C \frac{dz}{(z-a)^n} =$	$2\pi i$, wh	en		
	A) n=1	B) $n = 0$	C) n≠ 1		D) None of	f these	
	iii In the Laurer	nt series expansion	$f(z) = \frac{1}{z(z-1)}$	valid	for $ z-1 > 1$, t	he coeffic	ient
	of $\frac{1}{z-1}$ is						
	A) 1	B) 0	C)	-1	D) 6		
	iv) If f(z) is ana	lytic for z < R and	d satisfies th	he condi	tion $ f(z) \le l$	M in $ z < R$	t and
	f(0) = 0 then	$ f(z) \leq \dots$					
	$A)\frac{M}{R} z $	B) $\frac{M}{R} z ^2$		C) $\frac{1}{R}$ z	:	D) $\frac{M}{R}$	
	v) The radius o	f convergence of ∑	$\sum_{n=1}^{\infty} \frac{n!}{n^n} Z^n$	is			
	A) -e	B) 1/e	" C) e		D)1/e		
1) I	Find radius of con	hree of the follow nvergence of f(z) = s transformation pr	$\sum_{n=1}^{\infty} a_n z$		itio.		[15]
		$ax^2y + bxy^2 + 2$ with parameter inte					armonic conjugate.) is
	continuous f	unction on the con	tour γ with	$ f(z) \le$	$\leq M, \forall z \in \gamma,$	then prov	e that
	$\left \int_{C} f(z) dz \right $	$\leq ML$ where L is t	he length o	f contou	r given by \int_a^b	$ \gamma'(t) dt$	t
Q.3		ne of the followin s analytic then Pro	_				[10]
	a) If f is con	stant then f is cons	stant				
	b) If Arg(f) is	s constant then f is	constant				
	2) Prove that to	each power series	$\sum a_n z^n$ the	re exists	a correspond	ding R wit	:h
	$0 \le R < \infty$	called the radius of	of converge	nce with	the followin	g properti	es
	i) $\sum a_n z^n$ c	onverges absolutel	y for every	z with z	z < R.		
	ii) If $ z > R$, the terms of power	er series be	come un	bounded and	so the ser	ies diverges.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I **Internal Examination(2019-20) Ordinary Differential Equations**

Subject: Ordinary Differential Equations Total Marks: 30

Date: 19/09/2019 Time: 03:00PM to 04:00PM

Q.1) Choose the correct alternative for the following question. [05]

i) If \emptyset_1 and \emptyset_2 are two solutions of L(y) = 0 then is also solution of L(y) = 0 where c_1 and c_2 are any two constants.

A) $c_1 \emptyset_1 + c_2 \emptyset_2$

B) $c_1 \emptyset_1 - c_2 \emptyset_2$ C)Both A and B

D) None of these

ii) The functions $\phi_1(x) = \cos x$, $\phi_2(x) = \sin x$ are on interval $-\infty \le x \le \infty$

A)Linearly Dependent

B) Linearly Independent

C)Both A and B

D)None of these

iii) In Legendary equation If α is a non-negative even integer, then \emptyset_1 is polynomial of degree 'n' containing only powers of x.

A) Odd

B)Even

C)Odd and zero

D)Even and zero

iv) If $f(x, y) = xy^2$, $R = \{(x, y) | |x| \le 1, |y| < \infty\}$ and K is Lipschitz constant then

A) F satisfies Lipschitz Condition on R with k = 2b

B) F satisfies Lipschitz Condition on R with k=0

C) F satisfies Lipschitz Condition on R with k = 1

D) F do not satisfy Lipschitz Condition on R

v) Which of the following is not solution of $y''' - 3r_1y'' + 3r_1^2y' - r_1^3y = 0$, where r_1 is constant

 $A)\emptyset(x) = e^{r_1x}$

B) $\emptyset(x) = x^2 e^{r_1 x}$

C) $\emptyset(x) = xe^{r_1x}$

D) $\emptyset(x) = x^3 e^{r_1 x}$

Q.2) Attempt any three

[15]

i) Suppose $\emptyset_1(x)$ and $\emptyset_2(x)$ are linearly independent solution of the constant coefficient equation $L(y) = y'' + a_1 y' + a_2 y = 0$, and if $W(\emptyset_1, \emptyset_2)$ is denoted by W than show that, W is constant iff $a_1 = 0$

- ii) Compute the equation y''' 4y' = 0
 - a) Compute the linearly independent solutions.
 - b)Compute the Wronskian of the solutions.
 - c) Find the solution \emptyset satisfying $\emptyset(0) = 0$, $\emptyset'(0) = 2$, $\emptyset''(0) = 3$
- iii) Classify the singular points in the finite plane $x^2(x^2 4)y'' + 2x^3y' + 3y = 0$
- iv) Show that $\emptyset(x) = \frac{d^n}{dx^n}[(x^2 1)^n]$ satisfies the Legendre equation hence show that $\emptyset(1) = 2^n n!$

Q.3) Attempt any One

[10]

i) If b(x) be the continuous function on an interval I every solution φ of L(y) = b(x) on I can be written as $\varphi = \varphi_p + c_1 \varphi_1 + c_2 \varphi_2$ where φ_p is particular solution and $\varphi_1(x)$ and $\varphi_2(x)$ are linearly independent solutions of L(y) = 0 with c_1 and c_2 are constants, then show that particular solution φ_p is given by

$$\varphi_p = \int_{x_0}^{x} \frac{\emptyset_1(t) \, \emptyset_2(x) - \emptyset_2(t) \, \emptyset_1(x)}{W(\emptyset_1, \emptyset_2)(x)} \, b(t) dt$$

Conversely, every such solution φ is a solution of L(y) = b(x)

ii) Find all the solutions of equation $y'' + 4y = \cos x$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2019-20) Classical Mechanics

Time: 3:00PM-4:00PM Date:20/09/2019	Total Marks: 30		
Q.1) Choose the correct alternative	for the following question. [05]		
1) Lagrangian is defined as			
A) L=T-V	B) L=TV		
C) L=T/V	D) L=T+V		
2) Equation of constraints that does not co	ontain time as		
explicit variable are referred as			
A) HOLONOMIC CONSTRAINTS	B) NON HOLONOMIC CONSTRAINTS		
C) RHEONOMIC CONSTRAINTS	D) SCLERONOMIC CONSTRAINTS		
3) Which of the following represents the s	pherical		
co-ordinates?			
A) (x, y, z)	B) (r, θ, φ)		
C) (r, θ, z)	D) NONE OF THESE		
4) If the work done by forces on the particl	e around a		
closed path in the force field is zero there	1		
A) THE FORCES ARE CONSERVATI	VE B) THE FORCES ARE NON CONSERVATIVE		
C) BOTH OPTION 1 AND 2	D) NONE OF THESE		
5) Limitations imposed on the motion of a	system are referred as		
A) CONSTRAINTS	B) FRAME OF REFERENCE		
C) DEGREE OF FREEDOM	D) NONE OF THESE		
Q.2) Attempt any three	[15]		
1)Show that curve is Catenary for which	the area of the surface of revolution		
is minimum when revolved about Y-	axis.		
2) Find the extremal of the functional $\int_0^{\frac{\pi}{2}}$	$(y'^2 - y^2 + 2xy)dx$ subject to the		
conditions that $y(0) = 0$, $y(\frac{\pi}{2}) = 0$			
3) Use Hamilton's Principle to find the equ			
pendulum. 4) Find the plain curve of fixed perimeter to	hat encloses maximum area		
Q.3) Attempt any One	[10]		
1)If the cyclic generalized co-ordinate	q_j is such that dq_j represents the		
translation of the system, then prove	that the total linear momentum is		
conserved.			

2)State and prove Basic lemma of variational calculus

Vivekanand College, Kolhapur (Autonomous) M.Sc. II Semester-III Internal Examination2019-20 MATHEMATICS

Sub: Functional Analysis Time: 03: 00PM -04:00 PM Total Marks:30 Date: 16/09/2019

Q.1. Choose correct Alternative for the follow	wing.	(5)	
i) Consider following two statements;			
I) Every normed linear space is a metr			
II) Every metric space is normed linea A) Only II is true. B) I			
	is true and II is fals		
	is true and I is fals	е.	
ii) Every projection on a Banach space B i			
A) linear, bounded, idempotent			
C) linear, norm preserving, nilpotent			
iii) In Hilbert space every sequence is		D) none of these	
A) convergent B) not convergent			
iv) If A and B are self-adjoint operators or if	i ri ulen ulen produ	ict AB is if and only	
$ \begin{array}{l} \text{if} \\ A) A^2 = B^2 \end{array} $	B) AB = BA		
C) A= B			
v) Consider following two statements	D) AB ≠ BA		
I)Every Banach space is reflexive norm linear	space		
II)Every reflexive norm linear space is Banach			
A) Only II is true. B) I is true and II is false		D) II is true and I is false	
Q2) Solve any THREE of the following.			(15)
1)If N' is Banach space then prove B(N, N') is	Banach space with res	spect to norm	
$ T = \sup\{ T(x) , x \text{ in } N x \le 1\}$			
2)If N is a normed linear space and x_0 is non zer N* such that $f_0(x_0) = x_0 $ and $ f_0 = 1$	o vector in N then sho	w that there exist a functional	f ₀ in
3)Prove that, Two norms $ _1$ and $ _2$ on a linear constants K_1 and K_2 such that, $K_1 x _1 \le x _2 \le$			ive
4)If $\{T_n\}$ and $\{S_n\}$ are sequences in $B(N)$ such that	hat $T_n \to T$ and $S_n \to S$	s as $n \rightarrow \infty$ then show that,	
a) $T_n + S_n \rightarrow T + S$ b) $kT_n \rightarrow kT$ for k in F c)	$T_nS_n \to TS \text{ as } n \to \infty$	[5].	
Q3) Solve any ONE of the following.			(10)
1)Define normed linear space. If N and N' are no N' then show that following conditions are equiv		is linear transformation from	N into
a)T is continuous on N			
b)T is continuous at origin			
c)there exist a real number $k \ge 0$ with property	$\ T(x)\ \le k\ x\ $ for all	x in N	
d)If $s = \{x \text{ in } N \text{ such that } x \le 1 \}$ is closed un	nit sphere in N then T((S) is bounded in N'	
2)State and prove Hahn Banach theorem.			

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-II) Semester-III Internal Examination(2019-20)

Advanced Discrete Mathematics

Time:3:00PM-4:00PM

Total Marks: 30

Date: 17/09/2019

Q.1) Choose the correct alternative for the following question.

[05]

i) Complete bipartite graph K_{n,n} is ---- regular graph.

A) n

B) n-1

C) n + 1

D) n - 2

ii) If tree T has n vertices, then T has exactly ---- number of edges.

A) n

B) n-1

C) n + 1 D) $\frac{n}{2}$

iii) The homogeneous solution to recurrence relation $a_r + 2a_{r-1} - 8a_{r-2} = 0$ is -----

A) $A_1(2)^r + B_1(4)^r$

B) $A_1(2)^r + B_1(-4)^r$

C) $A_1(-2)^r + B_1(4)^r$

D) $A_1(-2)^r + B_1(-4)^r$

iv) For a Boolean algebra B, if a + b = 0, then ----

A) a = 0, b = 0 B) $a = 0, b \neq 0$

C) $a \neq 0, b = 0$

D) $a \neq 0, b \neq 0$

v) If G is connected graph, then G is tree iff every edge of G is -----

A) loop

B) bridge

C) not bridge

D) none of these

Q.2) Attempt any three

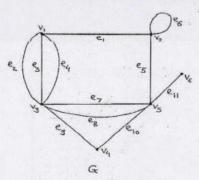
[15]

i) Prove that in group of 'n' people there are two persons having same number of friends.

ii) Solve the recurrence relation $a_r - 4a_{r-1} + 4a_{r-2} = 0$ with $a_0 = 1$, $a_1 = 1$

iii) State and prove De-Morgan's law in Boolean algebra.

iv) Define Boolean algebra. For a Boolean algebra B, show that


a) a * (a + b) = a

b) If a + x = 1 and a * x = 0, then x = a'

Q.3) Attempt any One

[10]

i) Find the graphs G-U, G-F, G[U], G[F] where $U = \{v_1, v_2\}$ and $F = \{e_1, e_2, e_5, e_{11}\}$

ii) Among the integers 1 to 300, find how many integers are not divisible by 3 nor by 5. Also find how many are divisible by 3 but not by 7.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination: 2019-20 MATHEMATICS

	8/09/2019 Total Marks: 3	
	ect the correct alternative for each of the following: Consider the following statements	5]
i.	Statement -1) M_3 is modular lattice.	
	Statement -1) M_3 is modular lattice. Statement -2) Every chain need not be modular lattice.	
	A) Only 1) true B) Only 2) true C) Both 1)&2) true D) none of	fthasa
		these
ii.	Which of the following is incorrect regarding lattice?	1-441
	A) $[\{1,2,3,6,9,18\}\]$ is bounded lattice B) $[\mathbb{Z} \leq]$ is not bounded	
	C) $[(0,1) \le]$ is bounded lattice D) $[[0,1] \le]$ is bounded l	attice
iii.	Let $P = \{2,3,6,12,24\} \&$	
	$x \le y$ iff $x y$ then number of edges in Hasse diagram of (P, \le) is	
	A) 3 B) 4 C) 5 D) none of these	
iv.	Select the incorrect statement.	
	A) M_3 has only one antichain. B) M_3 has more than one antichain.	hain.
	C) Longest antichain of M_3 has three elements. D) none	of these.
v.	Consider the following statements Statement - 1) Every ideal is heriditory subset. Statement - 2) Every heriditory subset is ideal. A) Only 1) true B) Only 2) true C) Both 1)&2) true D) Both 1)&	2) false.
	ttempt any three of the following: et satisfies DCC then prove that it has minimal element.	[15]
e) If th	e algebra $< L$, \wedge , $\vee > be a lattice & a \le b iff a = a \wedge b then prove that$	
	$< L, \le >$ is a poset & as a poset it is a lattice.	
S)If θ	s a congruence relation on lattice L then for every	
	$a \in L$ prove that $[a]_{\theta}$ is convex sublattice of L .	
4) Pro	we that the lattice L is distributive lattice if $f \exists median \ \forall \ a,b,c \in L$.	
Q.3. A	ttempt any one of the following:	[10]
l) Stat	and prove Stones theorem.	
	is finite distributive lattice then prove that the map	

 $f: L \to H(J(L))$ is an isomorphism.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2019-20) Number Theory

Time: 03:00PM to 04:00PM	Total Marks: 30
Date:19/09/2019	
Q.1) Choose the correct alternative	for the following question. [05]
1)The prime factorization of 7007 is	
a) 7^3 . 11.13	b) 7 ² . 11.13
c) 11 ³ .7.13	d) 13 ³ . 7.13
2) The least common multiple of 41	* 42 and 42 * 41 is
a) 41 b) 42 c) 84	d) 41 * 42
3) The sum of two positive integers i	s100. If one is divided by 7
	r is divided by 9 the remainder is 7. Then
the numbers	
are	
a) 43,57 b) 57,43 c)	
4) If a is odd then $gcd(3a, 3a + 2)$	
a) 1 b) 2 c) 3	
5) Applying Euclidian algorithm find	the particular solution
of $112x + 70y = 168$.	4 26 D 24 26
a) 36, 24 b) 24, -36 c) -24	
6) Remainder obtained upon dividing	
	d) 9
Q.2) Attempt any three	[15]
By using mathematical induction	
State and Prove Euclid's theore	
3) Prove that for any positive interest that $gcd(a, a + 1) = 1$	eger n and a, $\gcd(a,b)/n$ and hence prove
4) Solve the linear Diophantine e	quation $54x + 21y = 906$.
Q.3) Attempt any One	[10]
1) Prove that the linear Diophantin	e equation $ax + by = c$ has a solution

iff d/c where $d = \gcd(a, b)$. If (x_0, y_0) is any particular solution of this

2) Prove that for given integers a and b not both zero, $lcm(a, b) \times$

gcd(a, b) = ab.

equation then all other solutions are given by $x=x_0+\frac{b}{d}t$ and $y=y_0-\frac{a}{d}t$.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2019-20) Operational Research-I

Time: 03:00PM to 04:00 PM Total Marks: 30

Date: 20/09/2019

Q.1) Choose the correct alternative for the following question. [05]

- i) Which of the following is correct?
 - A) An extreme point is boundary point of set
 - B) An extreme point cannot be between any other two point of set
 - C) Both A and B
 - D)None of these
- ii) If an optimal solution is degenerate, then
 - A) it has an alternate optimal solution B) solution is infeasible
 - C) solution is unbounded
- D) None of these
- iii) The solution of Dynamic Programming Problem is based upon...
 - A) Bellman's principle of calculus
- B) Principle of Optimality
- C) Bellman's principle of optimality
- D) None of these
- iv) The general NLPP with equality constraints....
 - A) Can be solved by using Kuhn-Tucker conditions
 - B) Can be solved by Lagrange's method
 - C) Can be solved only if the constraints are of ≤ type
 - D) Are usually solved by simplex method
- v) The solution of Dynamic Programming Problem is based upon...
 - A) Bellman's principle of calculus
- B) Principle of Optimality
- C) Bellman's principle of optimality
- D) None of these

i) Rewrite the following LPP in standard form

1) Min
$$Z = 2x_1 + x_2 + 4x_3$$
,
subject to $-2x_1 + 4x_2 \le 4$, $x_1 + 2x_2 + x_3 \ge 5$, $2x_1 + 3x_3 \le 2$,
 $x_1 \ge 0$, $x_2 \ge 0$, x_3 unrestricted in sign
2) Min $Z = x_1 - 2x_2 + x_3$,
subject to $2x_1 + 3x_2 + 4x_3 \ge -4$, $3x_1 + 5x_2 + 2x_3 \ge 5$,
 $x_1 \ge 0$, $x_2 \ge 0$, x_3 unrestricted in sign

- ii) Solve the following problem by dynamic programming Min $Z=x_1x_2x_3$ subject to $x_1+x_2+x_3=100$, $x_1\geq 0, x_2\geq 0, x_3\geq 0$
- iii) Prove that the set of all convex combinations of a finite number of points of set $S = \{x : x = \sum_{i=1}^{m} x_i \lambda_i, \lambda_i \ge 0, \sum_{i=1}^{m} \lambda_i = 1\} \text{ is a convex set}$
- iv) Define convex set. Show that the set $S = \{(x_1, x_2): 3x_1^2 + 2x_2^2 \le 6\}$ is convex set

Q.3) Attempt any One

[10]

i) Prove that if X_0 is an optimum solution to the primal, then there exists a feasible solution W_0 to the dual such that $C^TX_0 = b^TW_0$.

Find the dual of the following primal problem Max
$$Z = 2x_1 + 3x_2 - x_3$$
, subject to $x_1 + x_2 - 3x_3 \le 8$, $x_1 - x_2 + x_3 \le 4$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

ii) Explain the Branch and Bound method in detail.

Date: 24/02/2020

Vivekanand College, Kolhapur (Autonomous) Department of Mathematics M. Sc. I Sem II and M.Sc. II Sem IV Internal Examination 2019-20

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on as given below timetable. The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Syllabus for M. Sc. I Sem. II

Sr. No.	Sr. No. Name of Paper	
1	Linear Algebra (CP-1175B)	Unit I
2	Measure and Integration (CP-1176B)	Unit I
3	General Topology (CP-1177B)	Unit I
4	Partial Differential Equations (CP-1178B)	Unit I
5	Numerical Analysis (CP-1179B)	Unit I

Syllabus for M. Sc. II Sem. IV

Sr. No.	Name of Paper	Topics
1	Field Theory (CP-1190D)	Unit I
2	Integral Equation (CP-1191D)	Unit I
3	Algebraic Number Theory (CP-1192D)	Unit I
4	Operational Research II(CP-1194D)	Unit I
5	Combinatorics (CP-1197D)	Unit I

Timetable:

Date	Time	Class	Subject
09/03/2020	03:00 PM to 04: 00 PM	M.Sc. I	Linear Algebra (CP-1175B)
	03:00 PM to 04: 00 PM	M.Sc. II	Field Theory (CP-1190D)
10/03/2020	03:00 PM to 04: 00 PM	M.Sc. I	Measure and Integration (CP-1176B)
	03:00 PM to 04: 00 PM	M.Sc. II	Integral Equation (CP-1191D)
11/03/2020	03:00 PM to 04: 00 PM	M.Sc. I	General Topology (CP-1177B)
	03:00 PM to 04: 00 PM	M.Sc. II	Algebraic Number Theory (CP-1192D)
12/03/2020	03:00 PM to 04: 00 PM	M.Sc. I	Partial Differential Equations (CP-1178B)
	03:00 PM to 04: 00 PM	M.Sc. II	Operational Research II(CP-1194D)
13/03/2020	03:00 PM to 04: 00 PM	M.Sc. I	Numerical Analysis (CP-1179B)
	03:00 PM to 04: 00 PM	M.Sc. II	Combinatorics (CP-1197D)

Nature of question paper

Time:-1 Hours Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three [15]

Four questions

Q.3) Attempt any One [10]

Two questions

(Prof. S. P. Patankar)
HEAD

Department of Mathematics Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination: 2019-20 MATHEMATICS

Subject: Linear Algel Date:09/03/2020	ora		Fime: 03: 00 PM-04:00 J	pm
Q. 1 Select the correct	alternative for ea	ch of the followin	Total Marks: 30	[5
	tor space of n × n S		strices, over R. Then dim	-
A) n^2 ii) $W^{\perp^{\perp}} = \dots$	B) $(n^2 + n)/2$ (with usual notation	C) $n^2 + n$	D) $(n^2 - n)/2$	
iii) If T be a linear ope	erator on R ³ , given l		D) V $\begin{vmatrix} y + z \\ + z \\ y + z \end{vmatrix}$ Then the matrix	
representation of t	VIIII IESHECI IA SIANA	ard boose of Da	D) $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 2 & 3 \end{bmatrix}$	
iv) If $A = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$ A) 4	-1 then A is of nil 0 B) 6	potence index C) 3	D) 2	
v] If dim V=n and S={v i) a subspace iii) a linearly dep	1,v2,,vn} spans endent subset	ii) a basis	of V.	
Q.2. Attempt any three 1.Prove that Sum, Scalar r transformation.	of the following: nultiplication and Pro	oduct of two linear to	ransformation is again a lin	[15] ear
2.Show that, (au+bv, au+l 3.State and Prove Cauchy S	wartz Inequality) + b \overline{a} (v,u) + b \overline{b} (v,v)	
4.Prove That, W^{\perp} Is subspace 5,If B = { v_1 , v_2 , v_n } is order If $w = a_1v_1 + a_2v_2 + a_nv_n$	thonormal set then ve	ectors in B are Linea	rly Independent .	
Q.3. Attempt any one of 1.lf T is homomorphism fro	f the following:	nel W , Then V is isor	morphic to U\W	[10]
2.If V is internal direct sudirect sure.	m of $U1, U2,$	ce of U then there is In ,Then prove that	homomorphism of U onto at V is isomorphic to exte	U\W ernal

Vivekanand College, Kolhapur (Autonomous)

	t:Measure and Integration Time: 03: 10/03/2020 Total Marks: 30	00 PM
Q. 1 Se	lect the correct alternative for each of the following:	[5]
i.		[0]
	a) 1 b) 0 c) ∞ d) $\frac{2}{n}$	
ii.	If $\mathbb Q$ is set of all rational numbers then $m^*(\mathbb R-\mathbb Q^c)=$	
	a) 1 b) 0 c) 2^c d) ∞	
iii.	A set F is F_{σ} set if it is	
	a) Countable union of open sets b) Countable intersection	on of open sets
	c) Countable union of closed sets d) Countable intersecti	on of closed sets
iv.	Let $f(x) = x , x \in [-1, 1]$ then	
	a) $D^+f(0) = 1$ b) $D^-f(0) = 0$	
	c) $D^+f(0) = 0$ d) $D^-f(0) = 1$	
٧.	If $A_n = \left(\frac{-1}{n+1}, \frac{1}{n+1}\right)$ then $\bigcap_{n=1}^{\infty} A_n$ is	
	a) 1 $b)$ 0 $a)$ a $d)$ a	

Q.2. Attempt any three of the following:

[15]

- 1) Prove that $L^1(E)$ is normed linear space
- 2) If a function f is measurable then prove that the set $\{x|f(x)=c\}$ is measurable.

for all c in \mathbb{R}

- 3) Prove that f is measurable if and only if $f^+ \& f^-$ are measurable
- **4)** If $A \subseteq B$ then prove that $m^*(A) \le m^*(B)$

Q.3. Attempt any one of the following:

[10]

- 1) If f is monotone on (a, b) then prove that f is differentiable a.e on (a, b).
- 2) State & prove Lebesgue convergence theorem.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2019-20)

Subject: Genera	i ropology		Total Mari	ks: 30
Date: 11/03/202	0		Time:03:00	PM to 04:00PM
Q.1) Choose the c	orrect alternative	for the follo		[05]
1) In a topology a) union of b) intersect c) union of d) intersect 2) Every closed a) connect 3) (R, U) space a) T ₀ but no 4) A topologica a) there exi b) there doe c) there exi d) none of	some member of surion of bases intersection of some and bounded interved b) compared by the transfer of T ₁ b) T ₀ all space X is connected a non-enterproper subset of T ₁ b) T ₀ also space a non-enterproper subset of T ₁ b) T ₀ also space a non-enterproper subset of T ₂ b) T ₁ and the transfer of T ₂ b) T ₂ also space a non-enterproper subset of T ₂ b) T ₃ and the transfer of T ₂ b) T ₄ b) T ₅ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₂ b) T ₆ and the transfer of T ₆ b) T ₆ and the transfer	n be express abbases the member of the memb	f subbases f subbase c) both a and b c) T ₀ , T ₁ and T ₂ nly if f X which is both op- subset of X which is both open and closed.	d) none of them d) none of them en and closed. both open andclosed
a) 1	b) ∞	c) 0	d) 2	
Q.2) Attempt any t	hree			[15]
 2) Let R be the set i) Ø ∈ S ii) a non – empt there exists a le p ∈ (a, b] ⊂ G Show that S is a 3) Consider the top 	y subset G of R beleft half open interval topology for R	and let S co ongs to S if (a, b] where $\{a, b\}$, $\{a, b,$	nsist of subset of R d and only if for each p e a, b \in R, a < b such c, d}, {c, d}} on X =	o∈G that
a) $A = \{a, b\}$	b) $B = \{b, c,$		$C = \{a, b, c\}$	d) $D = \{b, d\}$
4) Show that A ∪ I Q.3) Attempt any				[10]
Q.5) Attempt any	One			[10]
Then B is	at let X be any non- s base for τ on X if $J\{B_i: B_i \in B\}$		and B be family of so	ome subset of τ .

 $b) \forall \, B_1, B_2 \in B, \forall \, x \in B_1 \cap B_2 \, \exists B_3 \in B \, \, \text{such that} \, x \in B_3 \subseteq B_1 \cap B_2$

close set is τ closed set.

2) Show that $f:(X,\tau) \to (Y,V)$ is continuous if and only if inverse image of each V

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2019-20) **Partial Differential Equations**

Total Marks: 30 Time:3:00PMto4:00PM Date: 12/03/2020

Q.1) Choose the correct alternative for the following question. [05]

1) The equation xp-yq=z is

a) Linear

b) semilinear

c) Quasilinear

d) Nonlinear

2) The equation Ruxx+Suxy+Tuyy+g=0 is parabolic if...

a) $S^2 - 4RT < 0$ b) $S^2 - 4RT > 0$ c) $S^2 - 4RT = 0$ d) None of these

3) The complete integral of $z=px+qy+\sqrt{pq}$ is

b) $z=ax+by+\sqrt{pq}$ a) z=a+b+ab

d) none of these

4) The equation Ruxx+Suxy+Tuyy+g=0 is elliptic if...

a) $S^2 - 4RT < 0$ b) $S^2 - 4RT > 0$ c) $S^2 - 4RT = 0$ d) None of these

5) The equation...represents the set of all right circular cones with x-axis as the axis of symmetry.

$$a)(x^2 + y^2) = (z - c)^2 tan^2(\alpha)$$
 $b)(x^2 - y^2) = (z - c)^2 tan^2(\alpha)$

$$b)(x^2 - y^2) = (z - c)^2 tan^2 (\alpha)$$

c)
$$(z^2 + y^2) = (x - c)^2 tan^2(\alpha)$$

c)
$$(z^2 + y^2) = (x - c)^2 tan^2(\alpha)$$
 d) $(x^2 + z^2) = (y - c)^2 tan^2(\alpha)$

Q.2) Attempt any three

[15]

- 1) Find the general solution of $z(xp yq) = y^2 x^2$.
- 2) Form partial differential equation from $z^2(1+a^3) = 8(x+ay+b)^3$
- 3) Obtaine pde by eliminating a,b from $z = ax^2 + by^2 + c$
- 4) Form partial differential equation from the relation $F(x-y, x-\sqrt{z})=0$

Q.3) Attempt any One

[10]

- 1) Reduce the equation xuxx yuyy = 0 into canonical form
- 2) If X = (P,Q,R) is a vector such that X curl $X = 0 & \mu$ is an arbitrary differentiable of x, y, z then prove that $\mu \overline{X}$ curl $\mu \overline{X} = 0$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2019-20)

Subject: Numerical Analysi	S Total Marks: 30	
Date: 13/03/2020	Time: 03:00PM to 0	4:00PM
Q.1) Choose the correct alter	native for the following question.	[05]
1) The formula of Newton –	Raphson method is	
A) $x_{k+1} = x_0 - \frac{f(x_0)}{f(x_k)}$ C) $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$	B) $x_{k+1} = x_0 - \frac{f(x_k)}{f'(x_k)}$	
	on in the interval $[a, b] \& f(a).f(b) < a$,	
the equation $f(x) = 0$ has at 1	least one real root or an odd number of	real
roots in (a,b) is known as		
A) Bisection Method	B)Iterative Method	
C) Direct Method	D)Intermediate Value Theorem	
3) If $\{x_k\}$ is convergent sequen	nce i.e. $\lim_{k\to\infty} \{x_k\} = x^*$ is root of $f(x) = 0$	and x_k
is called of $f(x)$.		
A) Order B) Approxim	ate root	
C) Zero D)Converger	nce	
1		
4) Suppose x^* is a root of $f(x) =$	0 with multiplicity 2. Then order of	
Convergence of Newton - Raphs		
A) 1 B)2 C)3		
	, if matrix $A = U$ (Upper triangular ma	triv)
Then this method is called	[10] [10] [10] [10] [10] [10] [10] [10]	uin)
	hod B) Forward Substitution Method	
	D) Decomposition Method	
C)Triangulation method	b) Decomposition Method	
Q.2) Attempt any three		[15] .
1) Determine the rate of converge	nce of Newton Raphson method.	[15]
2) Derive Gauss Legendre integra	BINGS [1	
	ng Newton cotes formula. Find error term also).
4) Answer the following.		
	of convergence c) Truncation error	
d) Crout Method e) Newt	ton cotes method	
O 3) Attempt any One		[10]
Q.3) Attempt any One1) Derive Simpson's rule by using	a Navitan Catas farmula	[10]
1) Delive ompson stute by using	5 1 William Colos formula.	
2) Describe third order Runge-Ku	itta method	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination: 2019-20 MATHEMATICS

	03: 00 PM- 04:00pm 09/03/2020		Subject : Field Total Marks:	The second of the Fig.
	elect the correct alternation and π are elem	native for each of the for nents over Q	llowing:	[5
	A) Transcendental	B) Algebraic	C) Irreducible	D) Reducibl
ii.	Polynomial of degree of	ne is always		
	A) Inseparable	B) Separable	C) Monic	D) Simple
iii.	If $f(x)$ is of degree 3,	Then $f(x)$ has Root.		
	A) Complex	B) Unique	C) Distinct	D) Real
iv.	Any subgroup and any	quotient group of a	group is solvable	
	A)Solvable	B) Normal	C) Separable	D) None
v. I	$fF \subseteq K \subseteq L$ are fields.	If a ∈ L be algebraic over	r K and K is an algel	braic extension of
	F. Then, a is			
A)	Algebraic over K	B) Algebraic Over F	C) Algebraic	D) Separable
Q.2. A	ttempt any three of th	e following:		[15]
	If $F \subseteq K$ be fields, $p(x)$	a monic irreducible polyno here exists an isomorphisn		b ∈ K be roots of
2.	Prove that an algebraic extension of F.	extension E of F is finitely §	generated over F if and	d only iff E is a finite
3.		sion of Q having a root of x		
4.	If $F \subseteq E$ be fields such the between F and E.	at [E : F] is prime number.	Prove that there are n	no fields property
	ttempt any one of the			[10]
1. 2.	A. Let $F \subseteq K$ be field and a	.: F] is finite, Then prove that ∈ K be algebraic over F. Then) over F such that p(a) = 0. Al	prove that there exist a	unique monic

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV

Internal Examination: 2019-20

Sub: Integral Equations	Date: 10/03/2020
Total Marks: 30	Time: 03:00pm-04:00pm
 Q.1) Choose the correct alternative for the factor of the second of the sec	kind rivial solution, if ot exist d) none of these) none of these d) none of these
Q.2) Attempt any three 1) Convert the following boundary value problem to an in $y'' + xy = 1$, $y(0) = 0$, $y(1) = 1$, $0 \le x \le 1$	[15] tegral equation.
 2) Prove that eigen functions g(s) and ψ(s) correspondent and λ₂ respectively of the homogeneous integral equand its transpose are orthogonal. 3) Find the eigen values and eigen functions of the homogeneous integral equandent in the second content is a second content in the second conte	uation $g(s) = \lambda \int K(s,t)g(t)dt$
$g(s) = \lambda \int st \ g(t)dt \ 1 \ 0$ 4) Find the eigen values and eigen functions of the ho $g(s) = \lambda \int \sin(s+t)g(t)dt \ 2\pi \ 0$	omogeneous integral equation
 Q.3) Attempt any One 1) Describe the procedure of solving non-homogeneous Fr kind with separable kernel. 	[10] redholm integral equation of 2nd
2) Solve the integral equation $g(s) = f(s) + \lambda \int_0^{2\pi} \cos(s) ds$	f(s+t)g(t)dt by discussing
all possible cases.	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2019-20) Algebraic Number Theory

Time:3:00PM-4:00PM

a] x is unit iff $N(x) \pm 1$

Total Marks: 30

Date:11/03/2020

Q.1) Choose the correct	alternative fo	or the following question. [05]	
1) Let $g_1, g_2,, g_n$ are $= 0$ ($m_i \in \mathbb{Z}$) if and only if	linearly indepen	indent in a abelian group G (over Z). $g_1m_1 + g_2m_1$	$_2++g_n$
(a) $m_i = 0$ for all i above	(b) $m_i = 0$ f	for some i (c) $m_i = 0$ for exactly i (d) No	ne of th
2)If $\{g_1,,g_n\}$ is a basis P: every $g \in G$ has a		ntation: $g = m_1g_1 + + m_ng_n (m_i \in \mathbf{Z})$	
Q: $\{g_1, g_2,, g_n\}$ is linear	rly independent	set.	
(a)P is true and Q is f	alse	(b) P is false and Q is true	
(c) P and Q are false		(d) P and Q are true	
3) Let G be a finitely geP: Every basis has sanQ: A linearly depende	ne number of el		
(a)P is true and Q is fa	alse	(b) P is false and Q is true	
(c) P and Q are false		(d) P and Q are true	
4) P: A complex number of	x will be called	algebraic if it is algebraic over Q, that is, it sati	sfies a non
zero polynomial equation	n with coefficie	ents in R.	
Q : A complex number non-zero polynomial eq	α will be called uation with coe	algebraic if it is algebraic over Q , that is, it sat fficients in Q .	isfies a
(a)P is true and Q is f	alse	(b) P is false and Q is true	
(c) P and Q are false		(d) P and Q are true	
5) Which of the following $\sqrt{}$	is not algebraic	over Q	
(a)2		(b) <i>i</i>	
(c) - <i>i</i>		(d) None of the above	
Q.2) Attempt any t	hree		[15]
1) Show that a R-modu	le M is cyclic if	f and only if $M \cong \frac{R}{I}$ for some ideal I of R.	
		nber is subfield of the complex field $\mathbb C$	
		a subring of the field of algebraic number ber field K and let $x, y \in O$ then	A.

b] x, y are associates then $N(x) = \pm N(y)$ c] If N(x) is rational prime then x is irreducible in O

Q.3) Attempt any One

[10]

- 1) Show that a complex number θ is an algebraic integer if and only if the additive group generated by all powers $1, \theta, \theta^2$, ... is finitely generated.
- 2) Show that the ring of integers O of $Q(\zeta)$ is $Z(\zeta)$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2019-20) Operational Research-II

Total Marks: 30

Time:03:00PM to 04:00 PM

in the system and average queue length
ii) Explain the model of communication system.

Date :	12/03/2020			
Q.1) Cl i) In	hoose the corr progressive failu	rect alternative for the re, probability of failure	the following qu	estion. [05] crease in the life of an
ite	m			
A)	increases	B) Remains constant	C) Decreases	D) None of these
ii) Tł	ne sequence of cr	itical activity in network	diagram is called.	
A) I	Dummy activity	B) Total float	C) Critical path	D) None of these
iii) Q	ueue can form or	nly when		
A) a	rrivals exceed se	rvice facility		
B) a	rrivals equals ser	vice facility		
C) s	ervice facility is	capable to serve all the	arrivals at a time	
D) t	here are more tha	an one service facility		
iv)	occurs w	nen a waiting customer l	eaves the queue du	e to impatience.
A) F	Reneging	B) Balking	C) Jockeying	D) None of these
v) In r	nodel I(b), minin	num average inventory	cost is	
A)	$\sqrt{\frac{2C_1C_3q}{T}}$	B) $\sqrt{\frac{2C_1C_3D}{T}}$	$C)\sqrt{2C_1C_3D}$	D) None of these
	tempt any thr stomers arrive at	ee a box office window, bo	eing managed by sin	[15] ngle individual,
ac	cording to Poiss	on input process with mo	ean rate of 20 per he	our. The time required
to	serve a custome	r has an exponential dist	ribution with a mea	n of 90 second. Find th
av	erage waiting tir	ne of a customer. Also d	etermine the averag	ge number of customers

iii) A self - service store employs one cashier at its counter. Nine customers arrive on an

average every 5 minutes while the cashier can serve 10 customers in 5 minutes.

Assuming Poisson distribution for arrival and exponential distribution for service time, find

- a) Average number of customers. in the system
- b) Average number of customers in the queue
- c) Average time a customer spends in the system
- d) Average time a customer waits before served.
- iv) Let the value of money be assumed to be 10% per year and suppose that machine A is replaced after every 3 years whereas machine B is replaced after every six years. The yearly costs of both the machine are given as under:

Year	1	2	3	4	5	6
Machine A	1000	200	400	1000	200	400
Machine B	1700	100	200	300	400	500

Determine which machine should be purchased.

Q.3) Attempt any One

[10]

- i) Develop economic lot size formula with uniform demand without shortage and production rate is infinite.

Find also optimum time of completion of the project. When the time of completion of each task is as follows:

[12]

Task	A	В	C	D	E	F	G	Н	I
Time	23	8	20	16	24	18	19	4	10

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-II) Semester-IV Internal Examination: 2019-20

		M	IATHEMA	TICS		
Time: 03: 00	PM-04:00pm		ct: Combir Total Mark		Date:	13/03/2020
Q. 1 Select	the correct :	alternati	ve for eac	h of the fo	llowing:	[5]
I. The w	eight of perm	utation (1	$(3,2,4) \in S_4$	i		
		a) 2	b) 4	c) 6	d) 8	
II. The tota	al number of 6	digit nun	nber in whic	ch all the odd	d digits	
& only	odd digits ap	pear is				
a) 6!	b) $\frac{5}{2}$ (6!)	c) $\frac{1}{2}$ (6!)	d) non	e of these		
III.The co	pefficient of x	² in the ex	pansion of	$(1-x)^{-2}$ is		
a) 1	b) 2	c) 3	d) 4			
IV. The we	eight of permi	utation (1,	$3,2,4) \in S_4 i$	S		
		a) 2	b) 4	c) 6	d) 8	
V. The r	number of der	angement:	s of (1,2,3)	is/are		
a) 1	b) 2	c) 3	d) none	of these		
	pt any three msey number			s prove that	R(2,p)=p.	[15]
2) With usua	al notations pr	ove that D	$n_n = (n-1)$	$\{D_{n-1}+D_{n-1}$	$_2$ }. $for n \ge 3$	(06+06+06)
3)Find the c	coefficient of	x^{21} in $(x^2$	$+x^3+\cdots)^6$			
4) Solve a _r :	$=10a_{r-1}-9a_{r}$	r-2 with in	itial condit	ions $a_0 = 38$	$aa_1 = 11$	
	pt any one o & prove princi			xclusion for	'n' finite sets	[10]

2) Find a cycle index of dihedral group on symmetries of square

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36221

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Signature of Supervisor

Suppliment No. : 1.

Roll No.

Class

: 1207

: Misc-I

Subject: Modern Algebra.

Test / Tutorial No.: 29

Div.:

ij te c] Both I and I are true

ij+ b] Hormal Subgroup

111) + d) Both (a) & (b)

iv) 0) 15

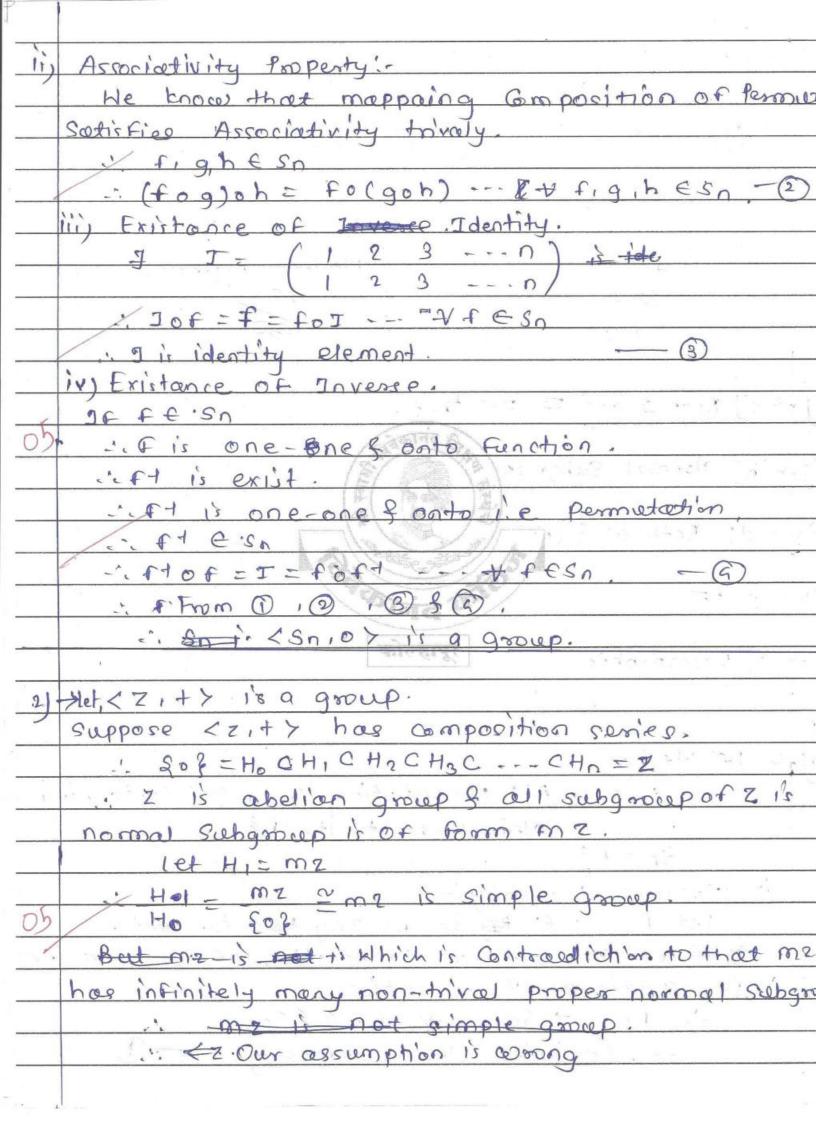
V) + 9) Isomorphic

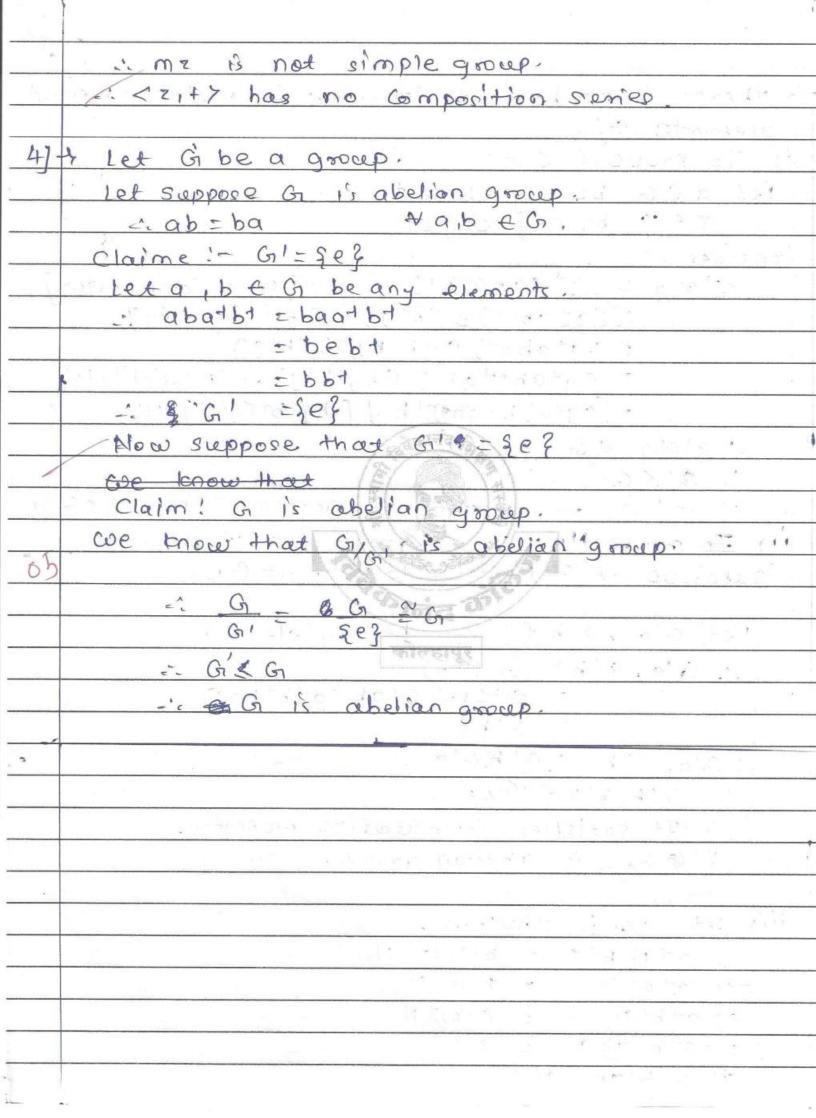
ily bet He have,

Sn = { All permutation from set containing

element for to itself &

Sn = 01


i) closure Property:-


Let f & g E sig Sn be any two element.

-> a quin as Permutation.

· fogesn + figesn

Son Satisfier Cloruse property 1 - 1


```
93.
 11th There is no harm to consider commutator elem
    generate G'
    i) To prove GISG
     let g f G be any element.
         æ € GI be any element.
    Consider.
        at as a = gt cabatbt) g ... [ se is Commutator
              = (9+aba+)e (b+9) -- [e is identity]
               = (gtabat) (gbtbgt) (btg)
               = cgtabatabt) (bgtbtg) .- [Associativity]
               = [(g+a) b (gta4) + b+ ] [ bg+b+ (g+)+] EG
      igtorg EGI
      1. G1 < G
      c. Gil is subgroup of G. normal subgroup of
    in Formere New G is group & G' is normal
      Subgroup of G Now we talk about Grant
       Let G'a, G'b & G/G, be any element.
       .. Q'a. G'b = G'(ab)
                   = Glab (at biba)
                   = Giba
      =: G'a. G'b = G'b, G'q
       2. G1b. G1à € · G1/g1
        .. It satisfies Commutative property
        i la Gy, is abelian group.
    ili) Let Gyn is abellian.
       : 04NB+N = b+N0+N
      =7 a+b+N = b+a+N

=7 a+b+N = (a+b)+N

=7 a+b+a+N = N
        1: at btab EN
```

शिक्षणमहर्षी डॉ. बापूजी साळुंखे
 36220

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Signature Supervisor

Suppliment No.: 2.

Subject: Modern Algebra.

Roll No.

: 120L

Test / Tutorial No.:

Div. :

Class

: Macl

- 9- p4 (9-1)-(p+)+++ EN

-. G' & N

=: Gtis-Subgroup of N.

Let Now suppose a 18 subgroup of N

Claime: G/H is abelian group.

let an , bN & GIN

QNIBN = (ab) N

= (ab) N (ab) (atbt ba)

aNIBN = bar N

aNbN = bhan

ES BHONE G/N

.. Gy is obelian group

	-
3) There is no harm to consider.	
A=\$1,2,3 n}	
Consider element	
1,16,162	
A is finite set so these an element can	not
be distinct.	
: 1 6 x = 1 6 s	
(16m)-1-(16)-1	
-116res-	
2: 16r-s = 1	
which is contraction to assumption 150=1	
: T = (1,16,162 - 0) - 0	
If i is 1st element of above sequence	*
i above sequence become.	
Po = Ci, 16, 162 - 160-1) - 0	
From O + O	
P, & Te are disjoint cycle of Finite	Set.A
If any small je A is com identical bet To	8 T2
then The for become identical which is no	ot try.
IF jEAB not in M, & To then we know to	e to
construct Ta	
Here A i's finite so there & procedure a	fter
Abite steps.	
: 6 = M. M2. M3 Mm	
Every permutation 6 of finite set A is	produc
of disjoint cycle.	
	*

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36308

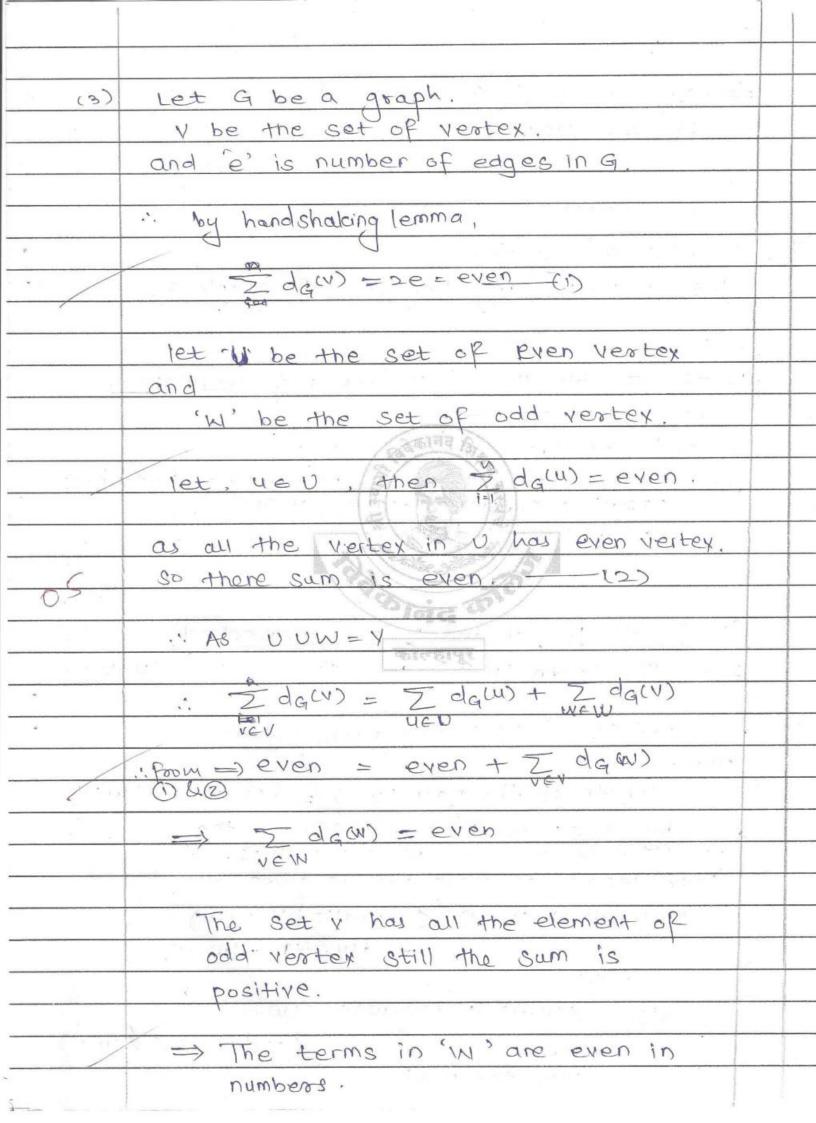
Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Signature of Supervisor

Suppliment No.: 1


Roll No. : 1210

Subject: Advance discrete mathematics

Test / Tutorial No.: Intermal exam

	05 + 15 + 10 = 30
9.1>	विकास के
(U)	(B) W(G) = 1
(2)	
05	C) Mu = 5
-	
· (4)	- (B) (B) paroxite (B) complete.
(15)	(A) K
1	

2		
(9.2)		
(1)	Let a be a graph.	
	The graph G has e no. of edges and	
	n vertices.	
	INE Know that,	
	Zdg(V) = 2e, veq(1) lemma.	
	$\sum_{i=0}^{\infty} dg(Y) = 2e , V \in \mathcal{G}. (1)$	
		- And the state of
	Given that :- the degree of t element	No. of Contract Contr
	have k then cn-to el vertices have	-
	degree (kH)	
		-
4.15	·: From (1)	
	:. K+++k+ -+k+ (KH)+kH)+kH,+k+	= 2
		-
5	't' times (n-t) times:	-
		-
	+k+(n+)cr+1)=2e	
-	1: tk+n(k+1)=1ck+1)=2e	
		1
	1	-
	+= (K+1)n-2e	
		- 1
	: Ang t = (K+1)n-2e	
		-
		+
		+
		-
		+

	is In any graph q, there is even number
and the second	of odd vertices.
-	
	the state of the s
(4)	the good graph.
	let u.v. W any vertices of graph G.
	i virtuelet deset en par en al 40 est
	case 1 :- let u and v are not connected.
	\Rightarrow $d(u,v) = \infty$
	and deu, w) + dew, v) = co.
	there is no path containing between (XXXXXX) axxx CXXXXXXX vacxXXX. u and v.
	=> (dcu,w) + d(w,y) = 00)
- Care	
The same of the sa	
1	Case II :- Jet u and v are connected.
>	-) The path (u-v) are (u-w) and (w-v)
	walk.
	i. i.e. (u-v) is is the path.
	Now,
	length of the path (u,v) = d(u,w)+d(w,v)
	unique path contained in u-v path is.
	the length of path usv is given as
	/=> length of (UIV) & walk of (UIV)
	= d(u, w)# d(w, v)
	and
	also, deviv) < deviv) < deviv)
1	(:deury) & deury)
1	i. Hence the proof.

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36285

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Signature of Supervisor

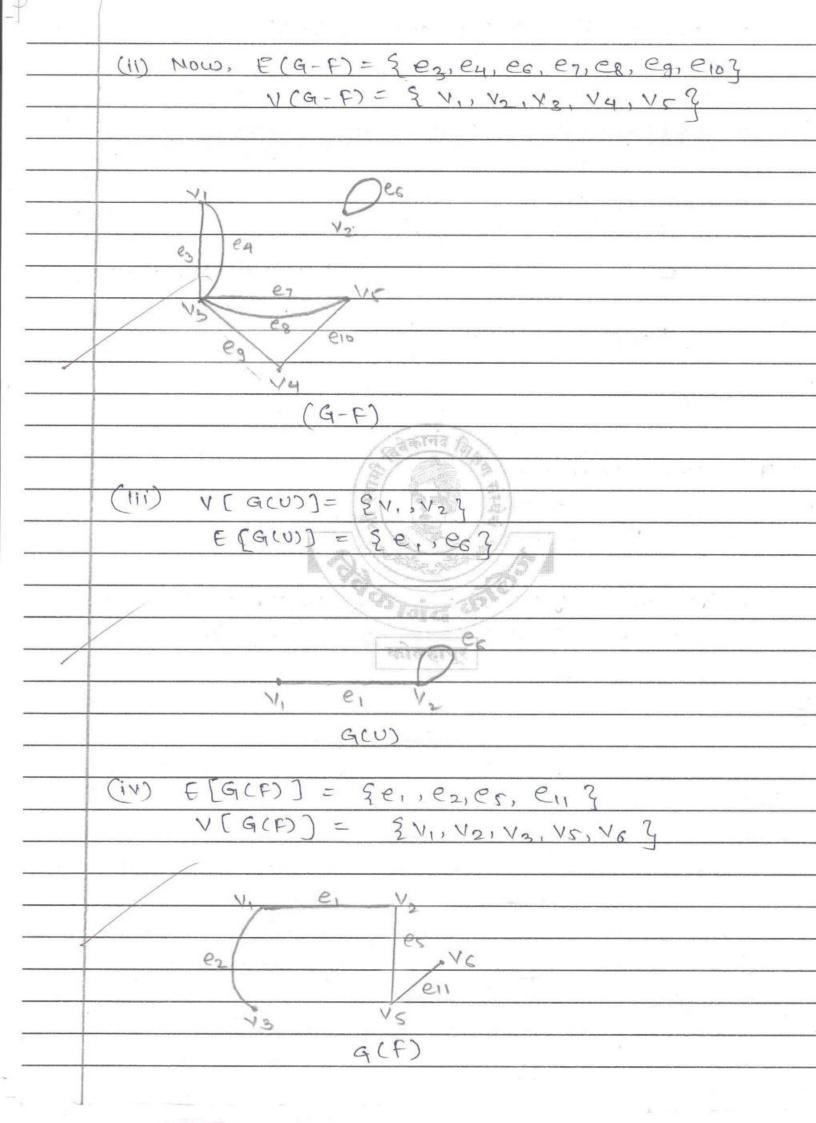
Suppliment No. : 2

Subject:

Test / Tutorial No.:

Advance discrete mathe

Roll No.


: 1210

Div. :

Class

MSCIT

(0.2)	CONTRIBUTION OF THE PARTY OF TH
Cai	Given that :- (8)
*	U= {V, , Y2}
	F= 9e1, e2, e5, e113
-	(i) Here V(G-V) = § V3, V4, V5, V6 }
	E(G-V) = { e7, e8, e9, e810, e113
-	SHEAGLES.
19	
	V ₄
	e7 /e11
	V5
	eg 68 610
	Y4
	[G-U]

	· Regular graph
(P)	Depinition:
Ц.	let G ho H
-	the vertex set of and v be
	the vertex set of and g and e is edge set of G then graph is called regular graph if every veV has same degree
	and is around is called regular
*	Joseph Je very ve v has same degree
	of vertex.
	/sthane co
	JUNE PO
M. Carlotte	1964 TORATE OF THE PROPERTY OF
	187 2 3
_	Page Al
- 1	
_	THE STATE OF THE S
4	
	1