

"Education for Knowledge, Science, and Culture" - Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Autonomous)

KOLHAPUR (AUTONOMOUS)

Date: 07/11/2022

M. Sc. I Sem. I and M.Sc. II Sem III Internal Examination 2022-23

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on **as given below timetable.** The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Syllabus for M. Sc. I Sem. I

Sr. No.	Name of Paper	Topics	
1	CP-1170A: Algebra	Unit I Unit I Unit I	
2	CP-1171A: Advanced Calculus		
3	CP-1172A: Complex analysis		
4	CP-1173A: Ordinary Differential Equation	Unit I	
5	CP-1174A: Classical Mechanics	Unit I	

Syllabus for M. Sc. II Sem. III

Sr. No.	Name of Paper	Topics	
1	CC-1180C: Functional Analysis	Unit I	
2	CC-1181C: Advanced Discrete Mathematics	Unit I	
3	CBC-1182C: Lattice Theory	Unit I	
4	CBC-1183C: Number theory	Unit I	
5	CBC-1184C: Operational Research -I	Unit I	

Timetable

Day and Date	Class	Time	Subject
Monday, 21/11/2022	M.Sc. I	03:00PM to 04:00PM	Algebra
	M.Sc. II	12:30 PM to 01:30 PM	Functional Analysis
Tuesday,22/11/2022	M.Sc. I	11:30AM to 12:30PM	Ordinary Differential Equation
	M.Sc. II	11:30AM to 12:30PM	Advanced Discrete Mathematics
Wednesday,23/11/2022	M.Sc. I	12:30PM to 01:30PM	Advanced calculus
	M.Sc. II	12:30PM to 01:30PM	Lattice Theory
Thursday,24/11/2022	M.Sc. I	11:30AM to 12:30PM	Complex analysis
	M.Sc. II	11:30AM to 12:30PM	Number theory
Friday,25/11/2022	M.Sc. I	02:00PM to 03:00PM	Classical Mechanics
	M.Sc. II	02:00PM to 03:00PM	Operational Research -I

Nature of question paper

Time:-1 Hours Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

ESTD. JUNE
1964

(Prof. S. P. Patankar)
HEAD
Department of Mathematics
Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous)

M.Sc. I Semester-I Internal Examination: 2022-23

MATHEMATICS

Sub: Algebra (CP-1170A) Time: 03:00 pm- 04:00 pm

Date: 21/11/2022 Total Marks:30

Q1) Select the correct alternatives

(5)

- 1] i) Every permutation is one one function. ii) Every one-one function is permutation.
 - a) (ii) is true. b) (i) is true. c) both statement are true. d) both statement are false.
- 2] Subgroup of order 2 is always ...
 - a) normal b) abelian c) Both a and b d) None
- 3] An contain every 3-cycle if
 - a) $n \ge 3$ b) $n \ge 5$ c) A_n is normal. d) A_n is simple.
- 4] with usual notation which is true?
 - a) $\{\sigma_0\}$, $\{\sigma_0, \sigma_1, \sigma_2\}$ are not subgroup of S₃.
 - b) $\{\sigma_0, \mu_1\}, \{\sigma_0, \mu_2\}, \{\sigma_0, \mu_3\}$ are only subgroups of S₃.
 - c) $\{\sigma_0, \sigma_1, \sigma_2\}, \{\sigma_0, \mu_1\}$ are subgroup of S₃.
 - d) S₃ has no subgroup of order 3
- 5] Order of A5 is...
 - a) 60 b) 120 c) 5 d) 5!

Q2) Solve any THREE of the following.

(15)

- 1] Prove that every permutation σ of a finite set A is a product of disjoint cycles.
- 2] Define commutator subgroup of group G. Show that G is abelian if and only if commutator subgroup is {e}.
- 3] Show that for $n \ge 3$, Subgroup generated by 3 cycle of A_n is A_n .
- 4] Define index of subgroup . Find index of A_n in S_n . Show that A_n is normal in S_n .

Q3) Solve any ONE of the following.

(10)

- 1] Define symmetric group of G, |G| = k.
 - Show that if A is non-empty set and S_A is collection of all permutations of A. Then, S_A is a group under permutation multiplication.
- 2] State and prove Caley's theorem.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2022-23) Ordinary Differential Equations

Subject :Ordinary Differential Equations Total Marks: 30
Date: 22/11/2022 Time:11:30 AM to 12:30 PM

Q.1) Choose the correct alternative for the following question. [05]

i) If $p_n(x)$ and $p_m(x)$ are n^{th} and m^{th} Legendary polynomials respectively, then $\int_{-1}^{1} p_n(x) p_m(x) = 0 \text{ is possible when } \dots$ A) m = n B) $m \le n$ C) $m \ge n$ D) $m \ne n$

ii) If $f(x,y) = y^{\frac{2}{3}}$, $R = \{(x,y)||x| \le 1, |y| \le 1\}$ and K is Lipschitz constant then

A) F satisfies Lipschitz Condition on R with $k = \frac{1}{2}$

B) F satisfies Lipschitz Condition on R with k = 0

C) F satisfies Lipschitz Condition on R with k = 1

D) F do not satisfy Lipschitz Condition on R

iii)If \emptyset_1 and \emptyset_2 are two solutions of L(y) = 0 then is also solution of L(y) = 0 where c_1 and c_2 are any two constants.

A) $c_1 \emptyset_1 + c_2 \emptyset_2$ B) $c_1 \emptyset_1 - c_2 \emptyset_2$ C)Both A and B D) None of these iv)The functions $\emptyset_1(x) = \cos x$, $\emptyset_2(x) = \sin x$ are on interval $-\infty \le x \le \infty$

A)Linearly Dependent

B) Linearly Independent

C)Both A and B

D)None of these

v) Which of the following is not solution of $y''' - 3r_1y'' + 3r_1^2y' - r_1^3y = 0$, where r_1 is constant

 $A)\phi(x) = e^{r_1 x}$

 $B) \emptyset(x) = x^2 e^{r_1 x}$

C) $\emptyset(x) = xe^{r_1x}$

D) $\emptyset(x) = x^3 e^{r_1 x}$

Q.2) Attempt any three

[15]

i) Classify the singular points in the finite plane $x^2(x^2 - 4)y'' + 2x^3y' + 3y = 0$

ii) Show that $\emptyset(x) = \frac{d^n}{dx^n} [(x^2 - 1)^n]$ satisfies the Legendre equation hence show that $\emptyset(1) = 2^n n!$

- iii) Classify the singular points in the finite plane $x^2(x^2 4)y'' + 2x^3y' + 3y = 0$
- iv) Show that $\emptyset(x) = \frac{d^n}{dx^n}[(x^2 1)^n]$ satisfies the Legendre equation hence show that $\emptyset(1) = 2^n n!$

Q.3) Attempt any One

[10]

- i) If \emptyset_1 is a solution of $L(y) = y'' + a_1(x)y' + a_2(x)y = 0$ on an interval I and $\emptyset_1(x) \neq 0$ on an interval I, then show that the second solution \emptyset_2 of L(y) = 0 on I given by, $\emptyset_2(x) = \emptyset_1(x) \int_{x_0}^x \frac{1}{[\emptyset_1(s)]^2} \exp[-\int_{x_0}^s a_1(t)dt]ds$ and function \emptyset_1, \emptyset_2 form a basis for the solution of L(y) = 0 on I.
- ii) Find all the solutions of y''' + y'' + y' + y = 1, $\varphi(0) = 0$, $\varphi'(0) = 1$, $\varphi''(0) = 0$

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-I) Semester	r-I Internal E	Examination: 2022-23	
Subject : Advanced Calculus		Date:23/11/2022	
Time: 12:30pm -01:30 PM		Total Marks: 30	
Q. 1 Select the correct alternative for o	each of the follo	wing.	15
1] For a vector field $\bar{f}, \bar{f}'(\bar{c}; \bar{0}) = _$	onen of the folio	, milg.	[5]
A) 0	$B) \bar{c}$		
c) ō	$D) \ \bar{c}\ $		
2] If $T: \mathbb{R}^n \to \mathbb{R}^m \& S: \mathbb{R}^m \to \mathbb{R}^p$	are linear then	order of matrix of (\$\bar{c}\$ \bar{T})	
	ar o miletar briefit	oracr of matrix of (3.1)	
$= \underline{\qquad \qquad \qquad }$ $A) \ n \times p \qquad B) \ m \times p$	C) $p \times n$	$D) m \times n$	
3) If I is linear then $f'(c:u) =$			
A) 0 B) $\bar{f}(\bar{u})$ C) \bar{f}	$\vec{F}(\vec{c})$ D) $\vec{F}'(\vec{c})$	$\overline{u})$	
4] Stokes theorem relates a surface int	egral to		
A) Volume integral C) Vector integral	B) Line integr	ral	
5] If $\alpha_1 v1 + \alpha_2 v2 + + \alpha_n vn = 0$, where	e v1 v2 vn	are linearly independent waste	
vector space V(F), then	, v.z., , vii	are inicarry independent vector	s in a
i) i=0 for all i=1,2,, n		i≠0 for all i=1,2,, n	
iii) i=0 for at least one i		$i\neq 0$ for at least one i	
Q.2. Attempt any three of the following	:		[15]
1) Prove that the sequence $\{f_n\}_{n=1}^{\infty} convergence$	ges pointwise b	ut not uniformly	[15]
where $f_n(x) = \frac{1}{nx+1}$, $0 < x < 1$			
2) If $\sum_{n} a_n$ converges absolutely then pro-	rove that every	subseris $\sum b_n$	
also converges absolutely.		n	
3) Let \bar{f} be a vector field given by $\bar{f}(x,y)$	$= \sqrt{v}i + (r^3 +$	$v)iwhere(x,y) \in \mathbb{D}^{2}$	
$y \ge 0$ obtain the integral of \bar{f} fr	am(0.0) to (1.1)) glong the noth $\alpha(t)$	
4) Let f be a double sequence. & $\lim_{p,q\to\infty} f(p)$	(0,0) to $(1,1)(0,q) = a \cdot Assum$	we that $\lim_{q \to \infty} f(p,q)$ exist for	
each fixed integer p. Prove that	the iterated lim	it,	
$\lim_{p\to\infty} (\lim_{q\to\infty} f(p,q))$ also exist &ha.	s same value a.		
Q.3. Attempt any one of the following:			[10]
1) If \bar{f} be differentiable at \bar{c} with to for every $\bar{u} \in \mathbb{R}^n$	otal derivative	$ar{T}_{ar{c}}$. Prove that $ar{f}'(ar{c};ar{u})=ar{T}_{ar{c}}(ar{u})$	
2) If $\{M_n\}$ be a sequence of non – ne	gative real nur	nbers such that $0 \le f_n(x) < N$	1,,
$\forall n \in \mathbb{N} \& \forall x \in S. Prove that \sum f_n$	converaes uni	formely on S if	16
$\sum M_n$ converges.		,	
Zin conto. gos.			

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination: 2022-23 MATHEMATICS

Subject : Complex Analysis Date:24/11/2022		Time: 11:30am -12 Total Marks: 30	2:30pm
Q. 1 Select the correct alternative for each	ch of the following:		
i) The radius of convergence of $\sum_{n=1}^{\infty}$	$\frac{n!}{}$ z^n is		[5]
A) -e B) 1/e ii) If $f(z)$ is an analytic function within $ f^4(2) = \dots$	C) e and on $ z-2 = 3$ and	f(z) < 2 on z-2 = 3,	then
A) 48/81 B) 24/27	C) 81/24	D) 27/48	
iii) In the Laurent series expansion $f(z)$ of $\frac{1}{z-1}$ is	$=\frac{1}{z(z-1)}$ valid for $ z $:-1 >1, the coefficient	
A) 1 B) 0	C) -1	D) 6	
iv) The excess of the number of zeros of function is called A) Maximum Modulus Principle C) Schwarz Lampara	B) Minimur	oles of a meromorphic n Modulus Principle	
C) Schwarz Lemma v) For the function $f(z) = \frac{z - \sin z}{z^3}$, at the p	D) The Arg point $z = 0$ is	ument Principle	
A) Pole of order 3	B) Pole of order 2		
C) Essential singularity	D) Removable sing	rularity	
Q.2. Attempt any three of the following: 1) Find radius of convergence of $f(z) = \sum_{n=1}^{\infty} a_n$, and the same of	[15]
Find radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$.			
) If γ is a contour with parameter interval [a			
continuous function on the contour γ			
$\left \int_{C} f(z) dz \right \leq ML$ where L is the length	gth of contour given	by $\int_a^b \gamma'(t) dt$	
If $u(x, y) = x^3 + ax^2y + bxy^2 + 2y^3$ is harm	nonic function and $v(x)$	(, y) its harmonic conjuga	te.
If $v(0,0) = 1$, then $ a + b + v(1,1) $ is equal	to		
2.3. Attempt any one of the following: of $f(z) = u(x,y) + iv(x,y)$ and $f'(z) = iv(x,y)$	exists at $z_0 = x_0 + iy$	₀ . Then prove that	[10]
the first order partial derivatives of u			$-v_x$
and prove that the function $f(z) = \frac{x^3}{z^3}$			
satisfied C- R equations at the ori	igin, vet $f'(z)$ does n	not evicte	

2) Define harmonic conjugate and prove that the function $u = x^2 - y^2 + xy$ satisfies

Laplace's equation and find the corresponding analytic function f(z)

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2022-23) Classical Mechanics

Time: 2:00PM-3:00PM Total Marks: 30 Date:25/11/2022

Q.1) Choose the correct alternative for the following question. [05]

- 1) The system is said to be in equilibrium, if the generalized forces acting on the system
- A) are equal to zero B) are non-zero C) are infinite D) none of these
- 2) If the force is conservative, the work done on the particle around a
 A) closed path in the force field is zero
 B) open path in the force field is zero
 - C) closed path in the force field is non zero

 B) open path in the force field is non zero

 D) none of these
- 3) Lagranges equation of motion is...

$$\mathbf{A})\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right) - \frac{\partial T}{\partial q_{j}} = Q_{j} \mathbf{B})\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) - \frac{\partial L}{\partial q_{j}} = Q_{j} \mathbf{C})\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right) - \frac{\partial T}{\partial q_{j}} = 0 \mathbf{D})\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) - \frac{\partial L}{\partial q_{j}} = 0$$

4) Lagranges equation of motion for conservative system is...

$$\mathbf{A}) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j \quad \mathbf{B}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = Q_j \quad \mathbf{C}) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = 0 \quad \mathbf{D}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0$$

19) Lagranges equation of motion for non-conservative system is...

$$\mathbf{A}) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j \quad \mathbf{B}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = Q_j \quad \mathbf{C}) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = 0 \quad \mathbf{D}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0$$

5) Lagranges equation of motion for partially conservative and partially non-conservative system is...

$$\mathbf{A}) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} = Q_{j} \quad \mathbf{B}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{j}} \right) - \frac{\partial L}{\partial q_{j}} = Q_{j}$$

$$\mathbf{C}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) - \frac{\partial L}{\partial q_{j}} = \frac{-\partial R}{\partial q_{j}} \quad \mathbf{D}) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) - \frac{\partial L}{\partial q_{j}} = -\frac{\partial R}{\partial \dot{q}_{i}}$$

Q.2) Attempt any three

1) Find the differential equation of the geodesic on the surface of an inverted cone with semi-vertical angle θ .

- 2) Obtain the Lagrangian L from the Hamiltonian H and show that it satisfies Lagrange's equations of motion.
- 3)Show that curve is Catenary for which the area of the surface of revolution is minimum when revolved about Y- axis.
- 4) Find the extremal of the functional

$$\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 2xy) dx$$
 subject to the conditions that $y(0) = 0$, $y(\frac{\pi}{2}) = 0$.

Q.3) Attempt any One

[10]

[15]

- 1) Describe the Routh's procedure to solve the problem involving cyclic and
- Define orthogonal transformation. Show that in the case of an orthogonal transformation the inverse matrix is identified by the transpose of the matrix.

Vivekanand College, Kolhapur (Autonomous) M.Sc. II Semester-III Internal Examination :2022-23 MATHEMATICS

Sub: Functional Analysis Date: 21/11/2022
Time: 12:30 PM-01:30 PM Total Marks:30

Q.1. Choose correct Alternative for the following. (5) 1) Consider following two statements I) Every normed linear space is a metric space. II) Every metric space is normed linear space. A) Only II is true. B) I is true and II is false C)Only I is false D) II is true and I is false. 2) Quotient space $N/M = \{x + M/x \text{ in } N\}$ is norm linear space with respect to norm A) $||x + M|| = \inf \{x + M / x \text{ in } N\}$ B) $\|x + M\| = \inf \{x M / x \text{ in } N\}$ C) $\|x + M\| = \sup \{x + M / x \text{ in } N\}$ D) $||x + M|| = \{x + M / x \text{ in } N\}$ 3) For finite dimensional norm linear space N, $\dim(N) = 14$ then $\dim(N^*) =$ ____ A) 7 B) 28 C) 14 D) 1 4)Every projection on a Banach space B is A)Linear, Bounded, Idempotent B) Linear, Idempotent, Continuous C)Linear, Norm preserving, nilpotent D) Both A and B 5) Consider following two statements DEvery Banach space is reflexive norm linear space II)Every reflexive norm linear space is Banach Space

Q2) Solve any THREE of the following.

A) Only II is true. B) I is true and II is false

(15)

D) II is true and I is false.

1)Define Banach space. Show that l_{∞} (space of all bounded sequences of scalars) which is normed linear space with $|| ||_{\infty}$ given by $|| x ||_{\infty} = \sup |x_i|$ for all x in l_{∞} is banach space.

C)Only I is false

2)If N is a normed linear space and x_0 is non zero vector in N then show that there exist a functional f_0 in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$

3)If N and N' are norm linear space then show that the set B(N,N') of all continuous linear transformation of N into N' is norm linear space with respect to norm $||T|| = \sup\{||T(x)||, x \text{ is in N and } ||x|| \le 1\}$

4) If $\{T_n\}$ and $\{S_n\}$ are sequences in B(N) such that $T_n \to T$ and $S_n \to S$ as $n \to \infty$ then show that,

a)
$$T_n + S_n \rightarrow T + S$$
 b) $kT_n \rightarrow kT$ for k in F c) $T_nS_n \rightarrow TS$ as $n \rightarrow \infty$

Q3) Solve any ONE of the following.

(10)

- 1) Define normed linear space. If N and N' are normed linear spaces ,T is linear transformation from N into N' then show that following conditions are equivalent
 - a)T is continuous on N
 - b)T is continuous at origin
 - c) there exist a real number $k \ge 0$ with property $||T(x)|| \le k||x||$ for all x in N
 - d)If $s = \{x \text{ in } N \text{ such that } ||x|| \le 1 \}$ is closed unit sphere in N then T(S) is bounded in N'
- 2) Define finite dimensional normed linear space. Prove that, If N is finite dimensional normed linear space then all norms on N are equivalent.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2022-23) Advanced Discrete Mathematics

Time: 11:30AM	to 12:30 PM				Tarks: 30 2/11/2022
Q.1) Choose the	correct alternati	ve for	the following	g question.	[05]
i) The order of recur	rence relation $a_r - 4$	$a_{r-2} +$	$3a_{r-3} = 5r +$	2 is	
A) 0		C) 2	D) 3		
iii) For a bounded di	stributive lattice an e	lement o	can have co	omplement if	they exist
A) only one	B) exactly two		C) more than		D) zero
iii) Complete bipartii	te graph K _{n,n} is re	egular g			2) 2010
A) n	B) $n - 1$		+1	D) $n - 2$	
iv) If tree T has n ver	tices, then T has exact	etly	number of edg		
A) n	B) <i>n</i> – 1		i+1	D) $\frac{n}{2}$	
v) The adjacency mat	trix of graph is n	natrix.			
A) diagonal	B) scalar	C) sy	mmetric	D) skew-s	ymmetric
Q.2) Attempt any	three				[15]
i)If T is a tree with at- then show that ii) Prove that graph G iii) Find particular sol iv) Obtain generating Q.3) Attempt any	is connected iff it has ution of recurrence re- function for the nume	s a span clation a	ning tree. $a_r - 2a_{r-1} = 3$	(2^r)	
					[10]
i) If A, B, C are three $ A \cup B \cup C = A $	finite sets, then show $+ B + C - A\cap B $	w that $B \mid - \mid B$	$\cap C - A\cap C $	+ A ∩ B ∩	<i>C</i>
	of recurrence relation				

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination: 2022-23 MATHEMATICS

Subject: Lattice Theory Date: 23/11/2022				2:30PM -01:30PN Marks: 30	Л
Q. 1 Se i.	Consider the follows tatement - 1) En Statement - 2) En A) Only 1) true	owing statemer very ideal is he very heriditory	of the following: nts rriditory subset.	[5]	lse.
ii.	A chain isA) Complemented C) may be completed		B) Not complemen D) None of these	ted lattice	
III.	In the poset $< \mathbb{Z}^+$, >	ntegers & is divides	relation then 3 & 1 D) neither a) n	
iv.	$L \& M$ be two suble $A) L \cap M$	attices of latti ·B) L ∪ M A) L × M	ce P then which of the		sublattice of
v.	Consider the follows tatement — 1) J(L. Statement — 2) H(A) Only 1) true B)	owing statements) is not ring of J(L)) is ring o	nts f set.		
	ttempt any three o e that every chain is la			tichain? justify.	[15]
2)Prove	that a poset $< L, \le > i$	s lattice iff su	pH & infH exists for	$every \emptyset \neq H \subseteq L.$	
	e a congruence relatio				
	convex sublattice of L.				
4) Show	that set of all ideals o	of lattice L for	ms a lattice under sei	inclusion,	
Q.3. A	ttempt any one of t	he following			[10]
r,	$(x \land y) \lor (x \land z) \le x \land x$	(y v z)			
ii	$(x \lor (y \land z) \le (x \lor y)$	$\land (x \lor z) \forall x,$	$y,z \in L$		
2) Prove	that a lattice is distr	ibutive iff it h	as no sublattice isom	orphic to	
	M_3 or N_5 .				

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2022-23) Number Theory

Time: 11:30 Date:24/11/	OAM to 12:30PN 2022	Л	Total M	arks: 30
Q.1) Choose	the correct alt	ernative for the	following question.	[05]
1) The produ	ict of positive di	visors of $n > 1$ is	s equal to	
A) n	B) $n^{\frac{\tau(n)}{2}}$	C) $n^{\tau(n)}$	D) $\frac{\tau(n)}{2}$	
2) The produ	ct of positive div	visors of 15 is ea	ual to	
A) 15	B) $15^{\frac{\tau(15)}{2}}$	C) $15^{\tau(15)}$	$D)\frac{\tau(15)}{}$	
	fall positive divi		2	
A) 1024	B) 1025	C) 1026	D) 1027	
4) μ(30) A) 0	D) 1	C) 1	D) 0	
5) $\mu(2019)$.		C) -1	D) 2	
A) 0		C) -1	D) 2	
Q.2) Attemp	t any three			[15]
1) By using n	nathematical ind	uction prove that	$21/4^{n+1} + 5^{2n-1}.$	
2) Prove that $gcd(a, a +$		integer n and a, g	$\gcd(a,b)/n$ and hence pro	ve that
3) State and P	rove Euclid's Le	emma.		
4)Solve the li	near Diophantine	e equation 172x	+20y = 1000.	
Q.3) Attempt	t any One			[10]
1) Prove that	the linear Dioph	antine equation a	ax + by = c has a solution	
d/c where	$d = \gcd(a, b)$.	If (x_0, y_0) is any \int	particular solution of this	
equation the	en all other solut	ions are given by	$x = x_0 + \frac{b}{d}t \text{ and } y = y_0$	$-\frac{a}{d}t$.
2) State and Pr	rove Division Al	gorithm.		

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2022-23) **Operational Research-I**

Time: 02:00PM to 03:00 PM Date: 25/11/2022	Т	otal Marks: 30
Q.1) Choose the correct alternative for	the following qu	uestion. [05]
 i) In Big – M method, the coefficient of artimaximization problem is 	ficial variable in the	objective function for
A) +M B) -M	C) Zero	D) None of these
ii) The point at which $\nabla f(x) = 0$ are called.		
A) boundary points B) interior points	C) extreme points	D) convex point
iii) A sufficient condition for a stationary po	oint to be an extreme	point is that the Hessian
matrix H is evaluated at x_0 is when x	o is minimum point	
1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	legative definite	
C) Positive semidefinite D) N	Vegative semidefinite	e
iv)The solution of Dynamic Programming P	roblem is based upo	n
A) Bellman's principle of calculus	B) Principle of Op	
C) Bellman's principle of optimality	D) None of these	
v) The general NLPP with inequality constra	aints	
A) Can be solved by using Kuhn -Tuck		
B) Can be solved by Lagrange's method		
C) Can be solved only if the constraints		
O 2) Attompt any thus		

Q.2) Attempt any three

[15]

i) Explain the model of communication system. ii) Show that the set $S = \{(x_1, x_2): x_1^2 + x_2^2 + x_3^2 \le 1\}$ is convex set

iii) Solve the following non - linear programming problem

Min
$$Z = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 200$$
,
subject to $x_1 + x_2 + x_3 = 1$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

iv) Find the extreme point of the function

$$f(x) = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 64$$

i) Define quadratic programming problem. Solve the following quadratic programming problem by Beal's Method. Max $Z=10x_1+25x_2-10x_1^2-x_2^2-4x_1x_2$, subject to $x_1+2x_2+x_3=10$, $x_1+x_2+x_4=9$,

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$

ii) Solve the following LPP Max $Z = 6x_1 + 4x_2$

$$subject\ to\ 2x_1+3x_2\leq 30,\ 3x_1+2x_2\leq 24,\ x_1+x_2\geq 3, x_1\geq 0, x_2\geq 0$$

"Education for Knowledge, Science, and Culture" - Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Autonomous)

KOLHAPUR (AUTONOMOUS)

Date: 17/04/2023

Department Of Mathematics

Notice(2022-2023)

All the students of M.Sc I(Mathematics)- semester II, M.Sc II(Mathematics) semester IV are hereby informed that internal examination will be conducted as follows.

Class	Subject	Date and Time
M.Sc. I	Linear Algebra (CP-1175B)	25/04/2023 (3:00 PM- 4:00 PM)
M.Sc. II	Field Theory (CC-1190D)	25/04/2023 (3:00 PM- 4:00 PM)
M.Sc. I	Numerical Analysis (CP-1179B)	26/04/2023 (3:00 PM- 4:00 PM)
M.Sc. II	Measure and Integration (CC-1191D)	26/04/2023 (3:00 PM- 4:00 PM)
M.Sc. I	General Topology (CP-1177B)	27/04/2023 (3:00 PM- 4:00 PM)
M.Sc. II	Algebraic Number Theory (CBC-1192D)	27/04/2023 (3:00 PM- 4:00 PM)
M.Sc. I	Partial Differential Equations (CP-1178B)	28/04/2023 (3:00 PM- 4:00 PM)
M.Sc. II	Operational Research II(CBC-1194D)	28/04/2023 (3:00 PM- 4:00 PM)
M.Sc. I	Integral Equation (CP-1176B)	29/04/2023 (3:00 PM- 4:00 PM)
M.Sc. II	Combinatorics (CBC-1198D)	29/04/2023 (3:00 PM- 4:00 PM)
	A A STATE OF THE PARTY OF THE P	

Syllabus for M. Sc. I Sem. II

Sr. No.	Name of Paper	Topics
1	Linear Algebra (CP-1175B)	Unit I
2	Numerical Analysis (CP-1179B)	Unit I
3	General Topology (CP-1177B)	Unit I
4	Partial Differential Equations (CP-1178B)	Unit I
5	Integral Equation (CP-1176B)	Unit I

Syllabus for M. Sc. II Sem. IV

Sr. No. Name of Paper		Topics	
1	Field Theory(CC-1190D)	Unit I	
2	Measure and Integration(CC-1191D)	Unit I	
3	Algebraic Number Theory(CBC-1192D)	Unit I	
4	Operational Research II(CBC-1194D)	Unit I	
5	Combinatorics (CBC-1198D)	Unit I	

Nature of question paper

Time:-1 Hours Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

ESTD JUNE 1964 Service Autonomous

(Prof. S. P. Thorat)

DEPARTMENT OF MATHEMATICS VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination: 2022-23 MATHEMATICS

C-1:	MATHEMATICS
Subject: Linear Algebra	Time: 03: 00 PM-04:00pm
Date: 25/04/2023	Total No. 1 and
Q. 1 Select the correct alternative	for each of the fall :
1] A zero vector is always	[5]
1) linearly dependent	ii) linearly independent
iii) member of any basis	i.) C.1
2] If T: $\mathbb{R}^2 \to \mathbb{R}^2$ and S: $\mathbb{R}^2 \to \mathbb{R}^3$	defined by T(v v)=(v v) = 1.5(v v)
ST(x,y) =	defined by $T(x,y)=(y,x)$ and $S(x,y)=(x+y, x-y, y)$ then
	ii)(x-y, x+y, x)
iii) (x-y, x+y, y)	iv)($v+2v$, $v+v$)
3] If dim V=n and S={v1,v2,,vn}	t anong V then C:
i) a subspace	of V.
iii) a linearly dependent sub-	ii) a basis
4] If T is a linear operator on \mathbb{R}^2 det	iv) the smallest subspace ined by $T(x_1, x_2) = (0, 0)$ then rank of $T = $
i) 3	med by $I(x_1, x_2) = (0, 0)$ then rank of $T = $
iii) 2	11) 0
	iv) 1
vector space V(F), then	re v1, v2,, vn are linearly independent vectors in a
i) i=0 for all i=1,2,, n	
iii) i=0 for at least :	ii) $i\neq 0$ for all $i=1,2,,n$
iii) i=0 for at least one i	iv) i+0 for at least and :
Q.2. Attempt any three of the follo	Wing:
	es. Prove that intersection of two subspaces is again a
2] Define isomorphism. Show that id	lentity transformation from vector space V to V is
- Paradita	
3] Prove that, If W is subspace of vec	ctor space $V(F)$ then $L(W) = W$ and conversely.
The busis of VIII. Show that H	1 (1) (1) 1 \t towns hosis - C m2 (n)
5] If S: $\mathbb{R}^2 \to \mathbb{R}^3$ is linear transforma	tion such that, $S(a, b) = (a+b, a-b, b)$. Find range, rank,
kernel and nullity.	don such that, $S(a, b) = (a+b, a-b, b)$. Find range, rank,
Q.2. Attempt any one of the followi	no.
1] State and prove Rank-nullity theore	ng. om [10]
2] Define direct sum Prove that V is	direct and CII Will I
$U \cap W = \{0\}.$	direct sum of U, W if and only if $V = U + W$ and

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2022-23)

Subject: Numerical Analysis **Total Marks: 30** Date:26/04/2023 Time: 03:00PM to 04:00PM

Q.1) Choose the correct alternative for the following question. [05]

1) The error in Trapezoidal rule is -----

A)
$$\frac{h^3}{12}f''(\xi)$$
 B) $-\frac{h^2}{12}f''(\xi)$ C) $-\frac{h}{12}f''(\xi)$ D) $\frac{h^3}{12}f''(\xi)$

2) Using Simpson's $\frac{1}{3}$ rd rule the value of integral $\int_0^2 \frac{dx}{5+3x} = ---$ A) 0.2909 B) 0.5273 C) 0.2636 D) 0.3626

3) If the method is explicit A is lower triangular matrix with diagonal entries

A) 1 B) -1 C) 0 D) 2

4) The order of a tree is the -----

A) Number of vertices in the tree B) Number of edges of tree

C) Number of roots of tree D) None Above

5) The stability region of fourth order Runge - Kutta method is -----

A)
$$\left\{z \in \mathbb{C}/\left|1+z+\frac{z^2}{2!}+\frac{z^3}{3!}\right| < 1\right\}$$
 B) $\left\{z \in \mathbb{C}/\left|1+z+\frac{z^2}{2!}\right| < 1\right\}$ C) $\left\{z \in \mathbb{C}/\left|1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\frac{z^4}{4!}\right| < 1\right\}$ D) $\left\{z \in \mathbb{C}/\left|1+z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}\right| < 1\right\}$ Q.2) Attempt any three

1) Determine the rate of convergence of Regula Falsi method.

2) Derive Gauss Legendre integration method for n=1

3) Estimate the eigen value of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$ by using Gerschgorin theorem

and Brauer theorem. 4) Answer the following.

a)Statbility region of Runge-Kutta third order method b) Diagonally dominant matrix

c) Quadrature formula

d) Stability region of Runge-Kutta second order method

e) The coefficient tableau

Q.3) Attempt any One

[10]

1) State and prove Brauer theorem.

2) Evaluate the integral $\int_0^1 \frac{1}{1+x} dx$ using Gauss Legendre three point formulas.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2022-23)

Subject: General				otal Marks	
Date: 27/04/2023				00 PM to 0	4:00
Q.1) Choose the c 1) Boundary point	orrect alterna set of a set of inte	tive for the ger Z is	e following qu	uestion.	[05]
a) N	b) Z	c) R	d) Q	
2) A property of a s	ubspace of a topol	logical space	is	. if each of its	subspace
has the same prop	perty				
a) connected	b) compact	c) heredita	ury d) cou	intable	
3) If (X, τ) is a topol	ogical space and	Y⊂ X and (Y	$(1, \tau_{Y})$ is relative	topology and	$A \subseteq Y$.
Then					
a) $int_X(A) \subseteq int$	_Y (A)	b) int _X (A)	$\supseteq int_{Y}(A)$		
c) $int_X(A) = int_Y$	·(A)	d) none	of them		
4) In Discrete topolo	gy, (X, D) is sepa	arable if and	only if X is		
a) uncountable	b) countab	ole	c) infinite	d) finite	
5) Which of the follo	owing property is	not hereditar	y property?		
a) Discreteness	b) indiscre	eetness	c) separability	d)T ₁ space	
b) closure set of	subspace of (X, τ) a point $y \in Y$ if and $t = \{\emptyset, X\}$ d a) $t \in \{0, X\}$ of $t \in \{0, X\}$ relation $t \in \{0, X\}$ of $t \in \{0, X\}$ relation $t \in \{0, X\}$ re	nd only if M T, {b}, {a, b}, {sed set tive to Y and ive to Y and space is here	$=$ N \cap Y for som $\{a,b,c\}\}$ and Y \cap X \cap X editary	the τ neighbour $\subset X$ such that	
2.3) Attempt any	One				[10]

1) State and prove Lindelof theorem

2) Prove that every compact Hausdorff space is norma

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2022-23) **Partial Differential Equations**

Time: 3:00 PM to 4:00PM Total Marks: 30

Date: 28/04/2023

Q.1) Choose the correct alternative for the following question. [05]

1) The equation $(x^2+z^2)p-xyq=z^3x$ is

a) Linear b) semilinear c) Quasilinear d) Nonlinear

2) The complete integral of z=px+qy+pq is a) z=a+b+ab b) z=ax+by+ab

d) none of these

3) The complete integral of $z=px+qy+\sqrt{pq}$ is

a) z=a+b+abb) $z=ax+by+\sqrt{pq}$ c) z=cd) none of these

4) The equation...represents the set of all right circular cones with x-axis as the axis of symmetry.

$$a)(x^2 + y^2) = (z - c)^2 tan^2(\alpha)$$
 $b)(x^2 - y^2) = (z - c)^2 tan^2(\alpha)$

c)
$$(z^2 + y^2) = (x - c)^2 tan^2(\alpha)$$
 d) $(x^2 + z^2) = (y - c)^2 tan^2(\alpha)$

5) The equation Ruxx+Suxy+Tuyy+g=0 is parabolic if...

a) $S^2 - 4RT < 0$ b) $S^2 - 4RT > 0$ c) $S^2 - 4RT = 0$ d) None of these

Q.2) Attempt any three

[15]

- 1) Find the general integral of $(x^2 + y^2)p + 2xyq = (x+y)z$.
- 2) Form partial differential equation from $z^2(1+a^3) = 8(x+ay+b)^3$
- 3) Find the general solution of $p + q = 2\sqrt{z}$.
- 4) Obtaine pde by eliminating a,b from $z = ax^2 + by^2 + c$

Q.3) Attempt any One

[10]

- 1) Obtaine the d'Alemberts solution of the one dimensional wave equation Which describes the vibrations of an semi infinite string.
- 2) If X = (P,Q,R) is a vector such that X curl $X = 0 & \mu$ is an arbitrary differentiable of x, y, z then prove that $\mu \overline{X}$ curl $\mu \overline{X} = 0$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II

Internal Examination: 2	2022-23
Sub: Integral Equations	Date: 29/04/202
Total Marks: 30	Time: 03:00pm-04:00p
Q.1) Choose the correct alternative for the	following question. [05]
 The type of integral equation g(s) = f(s) + λ ∫ K(s) a) Volterra integral equation of 1st kind b) Fredholm integral equation of 1st kind c) Homogeneous Fredholm integral equation of 2d d) Non-homogeneous Fredholm integral equation 2d d) Non-homogeneous Fredholm integral equation has a) D(λ) = 0 b) D(λ) ≠ 0 c) D(λ) does 3d The eigen values of non-zero symmetric kernel at a) real b) zero c) only imaginary 4d eigen values of symmetric kernel is always a) empty b) non-empty c) does not exist 5d A symmetric kernel possesses eigen value. a) only one b) at-least one c) at-most one Q.2) Attempt any three Convert the following initial value problem to an y" + y = cosx, y(0) = 0, y'(0) = -1 Prove that eigen functions g(s) and ψ(s) corresponded to the following boundary value problem to y(0) = 0, y(1) = 1, 0 ≤ x ≤ 1 Find the eigen values and eigen functions of the homogeneous of the homogeneous integral eigen functions of the homogeneous and the eigen values and eigen functions of the homogeneous integral eigen functions of the homogeneous and eigen functions of the homogeneous integral eigen functions of the homogeneous and eigen functions of the homogeneous integral eigen functions of the homogeneous and eigen functions of the homogeneous integral equation integral equation integral equation of the homogeneous integral equation integ	and kind a of 2nd kind as trivial solution, if not exist d) none of these [15] a integral equation. Inding to distinct eigen values λ_1 equation $g(s) = \lambda \int K(s,t)g(t)dt$ an integral equation.
Q.3) Attempt any One	[10]
1) Describe the procedure of solving non-homogeneous	ous Fredholm integral equation o
2nd kind with separable kernel.	
2) Solve the integral equation $g(s) = f(s) + \lambda \int_0^1 (1 - s)^2 ds$	-3st)g(t)dt by discussing all

possible cases.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination: 2022-23 MATHEMATICS

		ne: 03: 00-04:00pm rks: 30
ntive for each of the fints over Q		[5]
B) Algebraic	C) Irreducible	D) Reducible
e is always		
B) Separable	C) Monic	D) Simple
hen $f(x)$ has Roo	t.	
B) Unique	C) Distinct	D) Real
uotient group of a	group is solvable	e.
B) Normal	C) Separable	D) None
a ∈ L be algebraic ov	er K and K is an alge	ebraic extension of
B) Algebraic Over l	F C) Algebraic	D) Separable
following: F] is prime number , TI	hen K = L or K = F	[15]
containing Q $\cup \{\sqrt{2}, \sqrt{3}\}$	$\overline{3}$. Then, find a basis o	f K over Q.
ontains a root of p(x)		
llowing: I extension of F and L be	a field extension of K . T	[10] Then prove that
oth [L : K] and [K : F] are	finite and in case, [L:F]] = [L:K][K:F]
F] is finite, Then prove to	hat [L:K] and [K:F] ar	e divisors of [L : F]
	B) Algebraic e is always B) Separable then $f(x)$ has Roo B) Unique uotient group of a B) Normal a ∈ L be algebraic ov B) Algebraic Over following: F] is prime number, The containing Q ∪ {√2, √2} F[x] be irreducible over ontains a root of p(x) conconstant polynomial of of f(x) Ilowing: I extension of F and L be oth [L: K] and [K: F] are	Total Ma ative for each of the following: ints over Q B) Algebraic C) Irreducible is always B) Separable C) Monic then $f(x)$ has Root. B) Unique C) Distinct uotient group of a group is solvable B) Normal C) Separable a \in L be algebraic over K and K is an algebraic over K and K is an algebraic over F C) Algebraic following: F] is prime number, Then $K = L$ or $K = F$ a containing $Q \cup \{\sqrt{2}, \sqrt{3}\}$. Then, find a basis of $F[x]$ be irreducible over F. Then prove that, the ontains a root of $P[x]$ onconstant polynomial over F. Then prove that of $P[x]$

Vivekanand College Kolhan

	M.Sc. (Part-II) Semester-IV Internal Examination: 2 t: Measure and Integration Time: 03	2022-23 : 00 PM
	olocit the correct alternative for each of the following:	
i.	If X is a set, which one of the following is the	[5]
	smallest σ – algebra of subsets of X?	
	A) $\{\emptyset, X\}$ B) $\{\emptyset\}$ C) $P(X)$ D) $\{X\}$	
ii.	If $\mathbb Q$ is set of all rational numbers then $m^*(\mathbb Q-\mathbb Q^c)=$	
	A) 0 B) 1 C) 2^C D) ∞	
iii.	A set F is G_{δ} set if it is	
	A) Countable union of open sets B) Countable intersec	tion of open sets
	C) Countable union of closed sets D) Countable intersec	
iv.	For $1 , q the conjugate of p, & any two positive number$	
	A) $ab \ge \frac{a^p}{p} + \frac{b^q}{q}$ B) $ab = \frac{a^p}{p} + \frac{b^q}{q}$	
	C) $ab > \frac{a^p}{p} + \frac{b^q}{q}$ D) $ab \le \frac{a^p}{p} + \frac{b^q}{q}$	
l.	If $A_n = \left(\frac{-1}{n+1}, \frac{1}{n+1}\right)$ then $\bigcap_{n=1}^{\infty} A_n$ is	
	a) 1 b) 0 c) ∞ d) $\frac{2}{n}$	
Q.2. Att 1) If E ₁	tempt any three of the following: is measurable set & $m^*(E_1\Delta E_2) = 0$ then show that E_2 is measurable	[15] le.
2) If a	function f is measurable then prove that the set $\{x f(x)=c\}$ is m	easurable.
	for all c in \mathbb{R} .	
3) Prove	e that f is measurable if and only if $f^+ \& f^-$ are measurable.	
4) <i>If</i> φ =	= $2\chi_A + 3\chi_B$ then find $\int \phi$, where $A = [2,3] \& B = [4,7]$. empt any one of the following:	[10]

State & prove Holders inequality.
 State & Prove Fatous lemma.

[10]

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2022-23) Algebraic Number Theory

Time: 3:00 PM - 4:00 PM **Total Marks: 30**

Date: 27/04/2023

Q.1) Choose the correct alternative for	r the	following question.	[05]
---	-------	---------------------	------

1)A commutativ	e division ring is	
(a)Finite inte	gral domain	(b) Integral domain
(c) Zero ring		(d) None of these
2) Let $x, y \in D$. x	and y are associates the	en which of the following conditions satisfies
(a)x = yu for		(b) $xy = u$ for u is a unit in D
(c) $x \mid y$ and y	x	(d) All of the above
3)If U is an ideal	of R and $1 \in U$, then	
(a)U is a pro	oper subset of R	(b) U is equal R
(c) U is a sup	er set of R	(d) $U = \phi$
4)Every integral d	omain is not a	
(a)Field	(b) Commutative ris	ng
(c) Ring	(d) Abelian group	with respect to addi- tion
5) If the ring R is	such that $(ab)^2 = a^2b^2$, a	$a, b \in R$, then
(a) R is commuta	ative	(b) R is non-commutative
(c) R is Zero ring		(d) None of these
.2) Attempt a	ny three	[15]

- 1) Let $M = M_1 \oplus M_2$ then prove that $\frac{M}{M_1} \cong M_2$ and $\frac{M}{M_2} \cong M_1$
- 2) Find the number θ such that $Q(\theta) = Q(\sqrt{2}, \sqrt[3]{3})$.
- 3) Show that a prime element in D is always irreducible.
- 4) Prove that every Euclidean Domain is principle ideal domain

Q.3) Attempt any One

[10]

- 1) In a domain D, in which factorization into irreducible is possible, prove that the factorization is unique iff every irreducible is prime.
- 2) Show that factorization of elements of O into irreducible is unique if and only if every ideal of O is principal

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2022-23) Operational Research-II

Total Marks: 30

Time: 03:00PM to 04:00 PM

Date: 28/04/2023

Q.1) Choose the correct alternativ	e for the following o	question. [05]
 i) The problem of replacement is not cone A) item that deteriorate graphically B) items that fail suddenly C) determination of optimum replace D) maintenance of an item to work of 	ement interval	
 In dummy activity in a project network 	ork always has a	duration.
A) one B) two	C) zero	D) Three
iii) Queue can form only when		D) Timee
A) arrivals exceed service facility		
B) arrivals equals service facility		
C) service facility is capable to serve a	all the arrivale at a time	
D) there are more than one service fac	ility	
iv) occurs when a waiting cust	tomor looves the 1	
A) Reneging B) Bollsing	comer leaves the queue d	ue to impatience.
A) Reneging B) Balking	C) Jockeying	D) None of these
v) The present worth factor of one ruped	e spent in n years with r	interest rate is given
1 1		
by $A) \frac{1}{1+r} \qquad B) \frac{1}{(1+r)^n}$	$C)\frac{1}{(1+r)^{-n}}$	D) None of these
Q.2) Attempt any three	(1+7) "	[15]

- i) A TV repairman finds that the time spent on his jobs has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they come in, and if the arrival of sets is approximately Poisson with an average rate of 10 per 8 hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average set just brought in?
- Draw a network diagram for the following project and number the events according to Fulkerson's rule

Activity A	1	B	C	D	E	E	G	TT	T	T	l vr	1-
no.			1		L	I	G	П	1	J	K	L

Preceding	ALC: N		A	D	10	1-			-			
	-	-	A	В	C	E	F	F	H	G, I	D,	K
activity											G	

- iii) Explain the model of communication system
- iv) Workers come to tool store room to receive special tools for accomplishing a particular project assigned to them. The average time between two arrivals is 60 second and arrival assumed to be in Poisson distribution. The average service time(of the tool room attendant) is 40 seconds. Determine

 [05]
 - a) Average queue length
 - b) average length of non-empty queue
 - c) average numbers of workers in the system including worker being attendant
 - d) mean waiting time of arrival
 - e) average waiting time of an arrival(worker) who waits.

Q.3) Attempt any One

[10]

- i) Obtain the steady state solution of (M/M/1): $(\infty/FCFS)$ system and solve this Equation
- ii) Derive the replacement policy of items whose maintenance costs increases with time. You may assume that money value also changes with time

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-II) Semester-IV

Internal Examination: 2022-23

***************************************	MATTER
Subject: Combinatorics	Time: 3:00PM-4:00PM

Date: 29/04/2023 Total Marks: 30 Q. 1 Select the correct alternative for each of the following:

I. The number of circular permutation of 5 objects is

[5]

- permanents, or
 - a) 120 b) 24 c) 6 d) 5
- II. The Ramsey Number R(3,3) =
 - a) 6 b) 5 c) 4 d) 0
- III. The number of three character string that can be formed using 26 letters of alphabate
 - a) 26 b) 26^2 c) 26^3 d) None of these
- IV. The type of permutation $(1,3,2,4) \in S_4$ is
 - a) [1111] b) [1000] c) [0000] d) [0001]
- V. The total number of 6 digit number in which all the odd digits& only odd digits appear is
 - a) 6! b) $\frac{5}{2}$ (6!) c) $\frac{1}{2}$ (6!) d) none of these

Q.2. Attempt any three of the following:

[15]

- i) Give a combinatorial proof of C(m + n, 2) C(m, 2) C(n, 2) = mn
- ii) By using product rule find the total number of divisors of 88
- iii) Find the coefficient of $p^2q^3r^3s^4$ in the expansion $(2p-3q+2r-s)^{12}$
- iv) Show that in agroup of 6 people there will always be a subgroup of 3 people

who are pairwise friends or a subgroup of 3 people who are pairwise strangers.

Q.3. Attempt any one of the following:

[10]

i)Let X be a finite set & Let G be a group of permutations of X then

- a) Prove that distinct orbits with respect to G forms a partition of X.
- b) With usual notations show that $\sum_{x \in X} |G_x| = \sum_{g \in G} |F(g)|$ where G_x is stabilizer &F(g) is permutation character.
- ii) Find a cycle index of dihedral group on symmetries of square

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। - शिक्षणमहर्षी हाँ. बापूजी साळुंखे 36593 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT Supervisor Subject: Numerical Analysis Suppliment No. : Test/Tutorial No .: Internal Exam Roll No. : 1203 Class : MSCI 91. 1) f (see) 4) EICAde) Intermediate value theorem 5)

```
92.
1>
    Given equation is.
        F(\alpha) = \cos \alpha - \alpha \cdot e^{\alpha} = 0
    Initial approximations are x0=0 and x1=1
        f(x_0) = f(0) = \pm, f(x_1) = f(1) = -2.1780
         F(\infty). F(\infty) < 0
        -: Root lies beth (0.1)
     By secant method we have,
      xx+1 - xx - (xx - xx-1), f(xx)
                   E(x14) - E(x14-1)
          = xkf(xk)-xk.f(xk-1)-xk.f(xk)+xk-1.f(xk)
                    ECOST & COOK-1)
          = ock-1. E(xxx) = xxx + E(xxx-1)
  XK+1
                   もくなってくるよくスペイン
  i) For 1 = 1
    x - x_0 \cdot F(x_1) = x_1 \cdot F(x_0)
              f (24) = PESCO ITE
         - (0).(-2.1780)-(1)(1)
              -2.1780 -1
              - 3.1780
      = 0.3147.
  : F(x) - 0.5198
 ii) for K=2
     xz - xz Fex
      x_3 = x_1 \cdot f(x_2) - x_2 \cdot f(x_1)
f(x_2) - f(x_1)
            (1) (0.5198) - (0.3147) (-2.1780)
                0.5198 + 2.1780
                 2.6978
```

```
DC2 = 0.4467.
                               f(\alpha_3) = 6.2036
                      iii) For K= 3
                                 x_4 = x_2 \cdot f(x_3) - x_3 \cdot f(x_2)
f(x_3) - f(x_2)
                                                 = (0.3147) \cdot (0.2036) - (0.4467) (0.5198)
                                                                                                0.2036-0.5198
                                                                 -0.1681
                                       = 0.5316
                                 F(\infty 4) = -0.0426
                                                                                                                                         विकानंद क्रि
                     iv) For K = 4 /8
                                  x_5 = x_3 \cdot f(x_4) = x_4 \cdot f(x_3)
f(x_4) = f(x_3) = x_4 \cdot f(x_
                                                       = (0.467) (40.0426) - (0.5316) (0.2036)
                                                                                                 -0.0426 002036
                                                                              -0.0190 -0.082
                                                                                                       -0.2462
                          x4 = 0.5167.
                       .: Approximate soin upto four iterations is 0.8167
                  Given equation is polynomial is
2)
                                  P_4(x) = x4 + x^2_1 - 2x^2 + x + 1
                     Initial approxi mations are
                                  Po = 0.5 and 90 = 0.5.
                         How ist iteration is.
```

```
2
 - Po = -0-5
 -90= -0.5
                           -0.25
                                  -0.625 0125
                    -0.5
                           -0.5
                                  -0.25.0.625
                           1.25
                     0.5
                                   0.125 0.5 z by
- Po = -0.5
                             0
                                  -0.375
- 90 = -0.5
                    -0.5
                            -0.5
                             0.75 -0.25 = C3
                      0
 Now,
    DP = - (bn (n-3 - bn-1 Cn-2)
             Cn-2 - En-3 (Cn-1 - bn-1)
         - (b4 (1 - b3 (2)
             c_2^2 - c_1(c_3 - b_3)
           [(0.5)(0) = (0.75)(0.75)]
            (0-75)2-(0)(-0-25-0.125)
            0.0938
               0.5625
      = 0.1668
: P1 = DP + P0
       = 6.1668 + 0.5
   P1 = 0.6668.
\Delta q = -(b_{n-1}(c_{n-1} - b_{n-1}) - b_n \cdot c_{n-2})
          (n-2 - (n-3 ((n-1 - bn-1)
     = -(b_3(c_3-b_3)-b_4(c_2))
           (2^2 - (((3 - 63)
         (0.125 + 0.25 - 0.125) - 0.5.(0.75)
(0.75)^2 - 0+(3-b3)
          0.0469+0.3750
Aq. = 0.75.
: 91 = Ago + 90
```

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। – शिक्षणमहर्षी हॉ. बापूजी साळुंखे 36612 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature

SUPPLIMENT

Suppliment No.: 1

Roll No. : 1203

Class : MSC - I

Supervisor

Subject: NA.

Test / Tutorial No.:

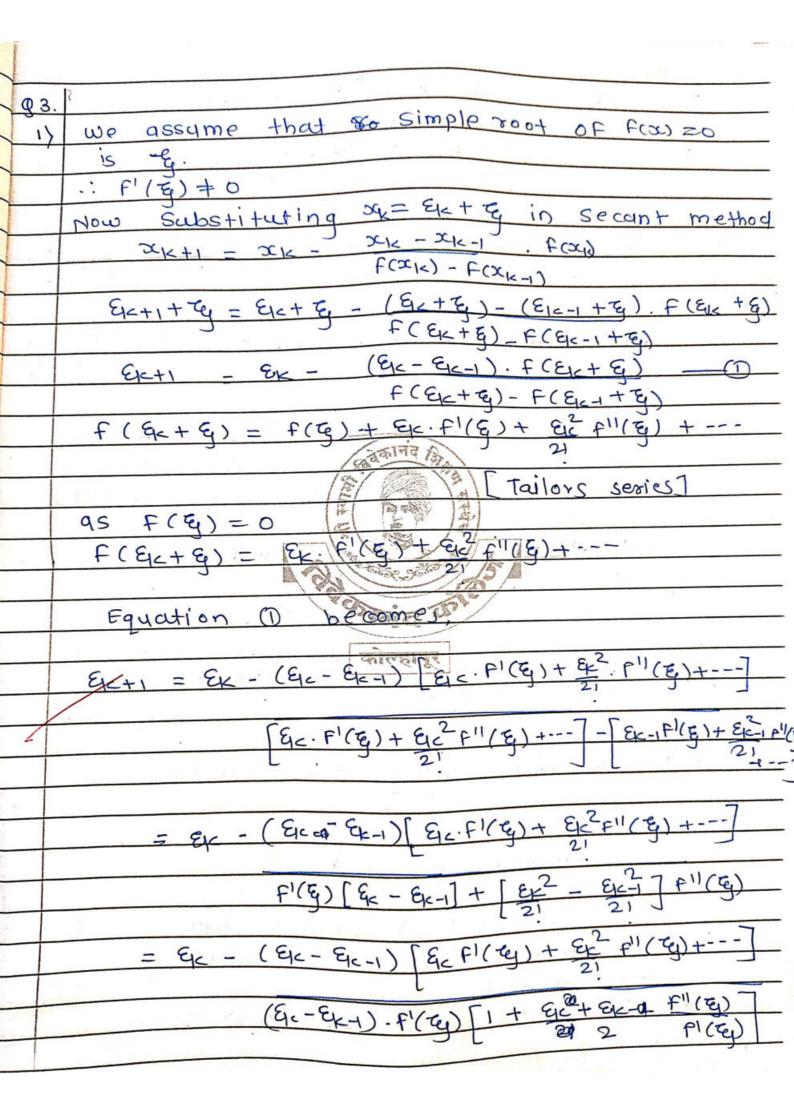
Div.:

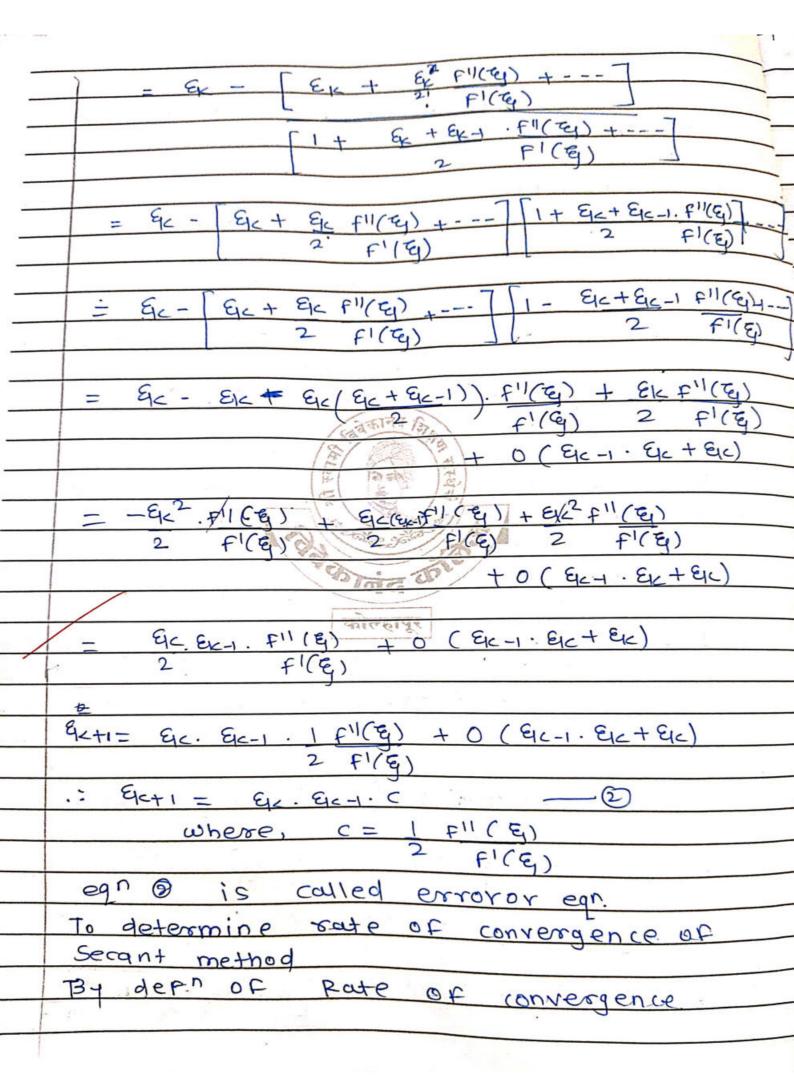
91 = 0.75+0.5

1.25.

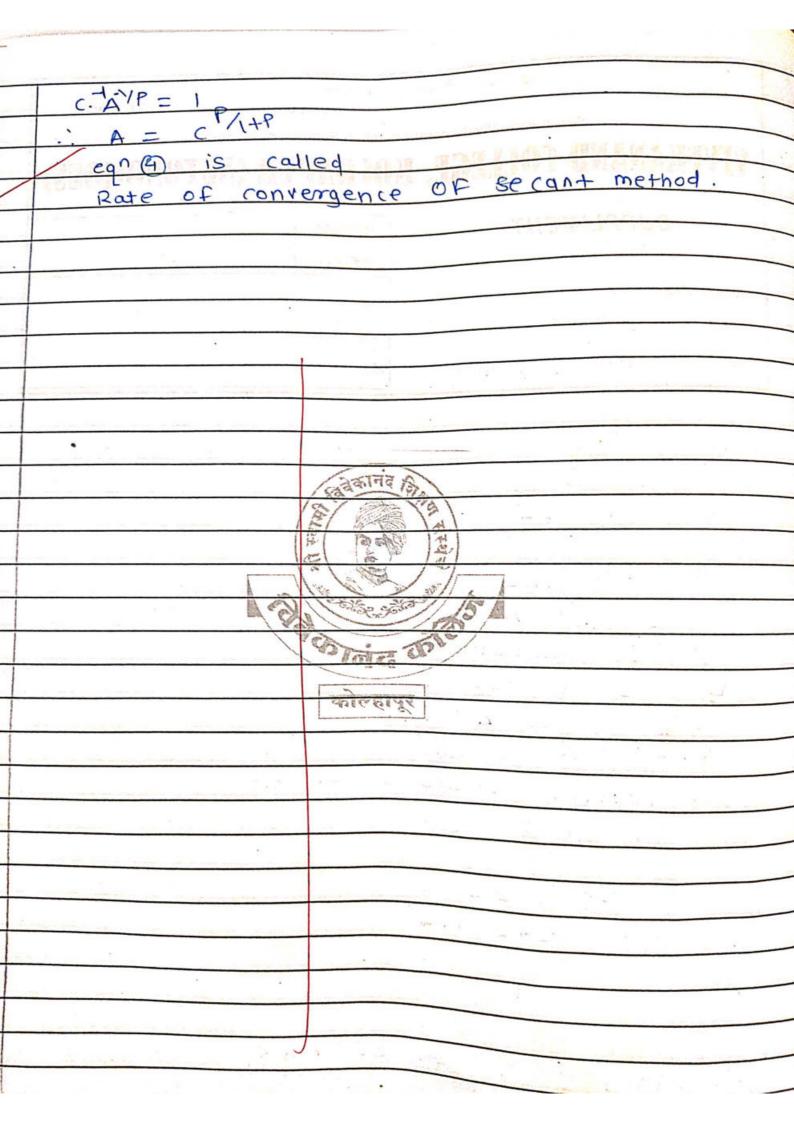
4.

17


: $L_1(x) = 3x_5$: $L(x) = x_3-11$


To = 2.

By Newton Raphson method


*= D For

```
33
             12
            0.0833 2.75
   201 =
 For
     K = 1
  x_2 = 2x_1^3 + 17
          3 (27)
         2 (2.75)3+17
            2 (2-75)2
         58.5938
          15.1250
  x_2 = 3.8740
                   वित्रकानंद कि
 For 1 = 2
     = 2 203 +17
  IZ
           3(\alpha)^2
         2 (3.8740) 417
             3(3.8740)2
           133.2810.
            45.623 6
      = 2.9602
  for k=3
   x_4 = 2x^3 + 17
3(x_3)^2
         2 (2.9602)3+17
              3(2.9602)2
           68.8792
             26.2884
      x4 = 2.6201
.. Approximate Solution
                            is
                                 2. 8201.
```


।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।। - शिक्षणमहर्षी डॉ. बापूजी सार्खुखे 36505 Shri Swami Vivekanand Shikshan Sanstha Kolhapur's VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS) Signature SUPPLIMENT of Supervisor Subject: Suppliment No.: 2 Test / Tutorial No.: Roll No. : (203 Div. : : MSC I (Maths) EK+1 = A. ER Egn D becomes min Ext1 = (.8/2.8/2-1 Comparing powers of EK 1 + 5 The largest value OF PIS

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

– शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36430

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

S	U	P	P	L	1	M	E	N	T

Suppliment No. :. \

Roll No. : 2219

Class : M.SC II

Signature of Supervisor

Subject: Lattice theory

Test / Tutorial No.:

Div.:

0-1.	
0	False
	In artichain no element is comparable
	antichain is not lattice.
2)	false True
1	Every lattice is paset but converse need not be t
7	every semi lattice is lattice & Poset is semi lattice
3)	False True
	Ho is lattice Ho is lattice , so it is also sublattion
W	True
	a n (a y (a n (a y (a n (a y (a y (a y (
	b
(2	True
	length of chain is element in chain minus 1.
	Tengin or civili is evening in the
65	2

0.2.	
- 0	let A be any set.
	Let PCAD be the power not of A.
	clearly, PCA) is non empty set.
	let, B, c & P(A) be any element in PCA)
-	claim - PCAD is lattice
1 1	case 1] - Of B = C, then
	Sup ? B, c 3 = BUC = C exist
	$\inf 28, c3 = 80c = 8$ exist
	In this case superice & infilly exist
	: PCA) is lattice.
	case 27 - 27 c = 8 then
	Sup 28, c3 = 8 exists
	inf 28, C3 = C eist
	In this case PCB) is lattice
	case 37 . IF 8 \$ C & 8 then
-	i) Sq Let Bac + \$, 3 ac Bac
	Sun 3B, C3 = BUC
	$Sup \ 2B_1C3 = 8VC$ $Sup \ 2B_1C3 = a$
	ii) OF BAC = \$ then
	Sun ZRic3 - RUC
C	54p 2B1C3 = BUC
E	
	. Power set at any set is lattice under s
	inclusion.
	WICHOUT.

2)	Let < P. 5 ? be a poset satisfying ACC.
2	Let 80 E P be any element
	If the is maximal element the we are done
	If the is not maximal element then 3 xiEP
	S.F. 20 521
	If & is maximal element then we are done
	if not then 3 82EP , S.t. 80581582
-	Continuing this process we get incereasing chain
	satisfying ACC
	j.e. 80581582 380 680+15
	This chain satisfying Acc then it must be
	terminates 00
	3 iE IN S.t. & = 2in =
	As no element in this chain is greater than the
	i.e. Ri covers all the element. then is
	maximal element then we are done.
	IF not then 3 yo & P, yo + zi, sit.
	2: 6 40
	If yo is maximal element then we are done
	OF not then 3 yr, s.t &i Eyo Ey,
	Continuing this way we get increasing chain
	satisfying Acc
	1.6. Bil Aold 2 - Auldon 1
	This chain satisfying Acc then it must be
	terminates, 3 je mm , s.t.
	9i = 9in =
05	It is cover all the element then it
	is abben pointy.
	Do same brocess for all bossiple chain.
	every chain is satisfying Acc has upper bour
	by zorn's lemma. It has marmal element.

3)	Let I be non empty subset of L
	$\phi \neq \mathcal{I} \subseteq \mathcal{L}$
	claim - Let abel, & avbet
	We know,
	$a \leq a \vee b$
	=> a = ancanp) e ?
	3 a e ? - 0
	As, b z avb
	b=bncanb) EI
	⇒ b∈2 - ©
	(0 f @ most 2 (2)
	CONTROL OF THE PARTY OF THE PAR
	Conversly, suppose abel, ander = aber
	We know,
	$q = q \sqrt{(anb)} \in \mathcal{I}$
	$\Rightarrow anb \in \mathcal{I}$
-	i. I is sublatice of L
	कीरकापुर
	let le L, xet be any element
	81058 P3811
	23 86 => auses
	=> I is lattice of L
-	
	The Marian Contract of the Con
	The second secon
-4	

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।।

- शिक्षणमहर्षी डॉ. बापूजी साळुंखे

36453

Shri Swami Vivekanand Shikshan Sanstha Kolhapur's

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SU	P	P	L	I	M	E	N	T
\sim		ш .	Description	#		District		

Suppliment No. : 2

Roll No.

: 2219

Class

: M.SCI

Signature of Supervisor

Subject: LT

Test / Tutorial No.:

Div.:

```
0.3.
      Let LL, <> be lattice.
       => by def of lattice sup # & inf # exist
       by We use method of induction on no. of elemen
       If H= Eaib3 then
       Sup Earl & inf Earls exists
      claim - Sup H = t
        then tis upper of bound of H
              be any upper bound of H
               is upper bound of a,b At but
         is appea bound of
```

≥ × < ₹'
As this upper bound of H but this
upper bound of k,c
⇒ t ≤ t'
f = H = H
Now , suppose sup H exist
$\int c_1 dx + \frac{1}{2} \int c_1 dx + \frac{1}{2} \int c_2 dx + $
$1e4 H = 2a_1 q_2 , a_k q_{kH} 3$
by hypothesis sup 3 ax, 9x+13 exist
and was supported to the support of
Sup H= Ea, 1921 - 1, 9x-1, Sup 39x, 9x+133 exist
by hypothesis sup H exists
by duality principle int H also exist.
. Sup H & inf H exist for any non empty subset
H of L
conversly, Suppose sup H & Inf H exist for any
non empty subset to t
In particular
H= 3a1b3
Sup Ea, b3 & inf Ea, b3 exist.
As as are any orbitrary element in L
As only one any orbitropy element in L
The state of the s

6.2.	
· W	let I pe jatice & a pe conducence relation on
	r=3[a]e aer3
	We define join & meet by
	oldno] = old] 1 oso] (i
	ii) [a]a v [b]a = [avb]a
	claim: - 40 is lattice
	1) I gewbojenj heobesta
	Let [6]0 E L
	oldnd2 = old2 nold3
	(2 Sto 3)
	oldred 3 = old 2 v old 3
	- 2630
r.	2+ satisfies idempotent property
/	ii) Associativity proposty
	Let Eagle, Ebgo L be any element
	0[410] = 0[4210[62
	o[pnd] =
	ospin oldi =
	o[dup] = o[d] vo[p]
	o[ovd] =
	0[p] v o[d] =
(ps	It satisfies associativity
	7
	iii) Commutative property
	let Eggo, [b]o, Ec]o EL be any element

	[a]an 3 [b]an [c]a3 = [a]an 2 [b] no [d] 5 no [d]
	of condups =
	= Ecanbonco
	= [anb]o n [c]o
	o[2] n € o[6] n o[6] {=
1/2	e me bane
	D[2] V ED[3] V D[0] = ED[2] V D[6] V D[0]
	It satisfies commutating
'w') An Absurption property
	Let saja, Ebjaer be any element
	£06403 510603 = £06124060331 0603
	of Edvo3nps = April of
	= 3(ana) vb3@
1	= 50b
	1/27 me brone
	o[0] = {o[d]/ o[0] > v o[0]
/	
	by 1, 11, 11, 11, 10 - La is lattice
	CHANNO CO
	JUNE P
	1984
17	