Dissemination of Education for Knowledge, Science and Culture" - Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

DEPARTMENT OF MATHEMATICS

B.Sc. Part - III Semester-V & VI

SYLLABUS

Under Choice Based Credit System

to be implemented from Academic Year 2023-24

B. Sc. Part-III

Paper No.	Course code	Title of Old Paper	Title of New Paper	Percentage	No. of
				(%)	Cleuits
		Sem	ester I		
V	DSC - 1003E1	Real Analysis and Modern Algebra	Real Analysis and Modern Algebra	0%	4
VI	DSC - 1003E2	Matrix Algebra and Numerical Methods I	Partial Differential Equation and Numerical Methods	70%	4
		Sem	ester II		
VII	DSC - 1003F1	Metric Space and Linear Algebra	Metric Space and Linear Algebra	0%	4
VIII	DSC - 1003F2	Complex Analysis and Numerical Methods II	Complex Analysis and Optimizatio n Technique	50%	4
	SEC	Transportation problem and itsmathematical formulation	Numerical methods and transportatio n problem and mathematica l formulation	50%	4

Computational Mathematics Lab- DSC 1003C(PR) Total Credit 08

Course code	Title of the course	Instructi ons Lectures /Week	Duration of term end exam	Marks [End of academic year]	Credit
CCPM IV	Operational Research	4	3 hours	50	4
CCPM V	Numerical Methods	4	3 hours	50	4
CCPM VI	Mathematical Computation using python	4	3 hours	50	4
CCPMVII	Project study and tour report	4	3 hours	50	4

MATHEMATICS-DSC-1003E1 Mathematics-Paper-V Real Analysis and Modern Algebra Theory: 72 Hours (90 lectures of 48 minutes)- Credits-4

(Marks-100)Section I: Real Analysis

Course Outcomes: On completion of the course, the students will be able to:

- CO1: Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limitsuperior, limit inferior, and the limit of a bounded sequence.
- CO2: Use the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.
- CO3: Understand some of the families and properties of Riemann integrable functions, and the applications of thefundamental theorems of integration.

CO4: Solve Riemann integral and improper integral

UNIT	Title of unit &	Hours
	Contents	Allotte
-		d
1	SEQUENCES OF REAL NUMBERS:	10
	Upper bound, Lower bound, Least upper bound, Greatest lower bound,	
	Definition of sequence and subsequence, Limit of a sequence, Convergent	
	sequence, Divergent sequence, Bounded sequence, Monotone sequence,	
	Limit superior and limit inferior, Cauchy sequences.	
2	SERIES OF REAL NUMBERS:	10
	Convergence and Divergence, Series with nonnegative terms,	
	Alternating series, Conditional convergence and absolute convergence,	
	Rearrangements of series, Tests of absolute convergence, Series whose	
	terms form a non-increasing sequence.	
3	RIEMANN INTEGRAL:	08
	Riemann integrability and integral of a bounded function over finite	
	domain, Darboux's theorem (statement only), another equivalent	
	definition of integrability and integral, Conditions for integrability,	
	Particular classes of bounded integrable functions, Properties of integrable	
	functions.	
4	IMPROPER INTEGRAL:	08
	Definitions of Improper integral, Test for convergence at 'a'. Positive	
	integrand f(x), not necessarily positive. General test for convergence,	
	Convergence at ∞ , the integrand being not necessarily positive: General	
	test for convergence, Absoluteconvergence, Tests for conditional	
	convergence.	

Recommended Books:

1. Richard R. Goldberg, Method of Real Analysis, Oxford and IBH publishing CO. PVT.LTD

2. Shanti Narayan and P. K. Mitthal, A Course of Mathematical Analysis, S. Chand Publication

Reference Books:

1. Tom M. Apostol, Mathematical Analysis (Second Edition) Narosa Publishing House, New Delhi 2.H.L. Royden, Real Analysis (Fourth Edition) Pearson India Education Services Pvt.Ltd.

Section II: Modern Algebra

Course Outcomes: On completion of the course, the students will be able to:

CO1: Recognize the mathematical objects that are groups, and classify them as abelian,

cyclic and permutationgroups, etc;

CO2: Explain the significance of the notion of cosets, normal subgroups, and factor groups CO3: The fundamental concept of Rings, Fields, subrings, integral domains and the corresponding Homorphisms

CO4: Apply fundamental theorem, Isomorphism theorems of groups to prove these theorems for Ring.

UNIT	Title of unit &	Hours
	Contents	Allotte
		d
1	GROUPS:	10
	Binary Compositions, Permutations (Definition and examples), Cyclic	
	Permutations, Cycles of a Permutation, Disjoint Permutations Even	
	permutation, odd permutation, Some Results from Number Theory	
	(statement only), The Greatest Common Divisor (definition only),	
	Some properties without proof, Groups - Abelian groups (definition	
	and examples), Subgroups, Centre of group, Normaliser of subgroup,	
	Cosets, Cyclic Groups, Euler's theorem and Fermat's theorem	
2	NORMAL SUBGROUPS, HOMOMORPHISM:	07
	Normal Subgroups, Quotient Groups, Homomorphisms,	
	Isomorphisms, Kernel, Fundamental theorems of homomorphism,	
	conjugate elements	
3	RINGS:	10
	Rings, zero divisors, Integral domains, Field, Subrings, Characteristic of	
	a Ring,	
	Idempotent element, nilpotent element, Product of Rings, Ideals, Sum	
	of Ideals, Product of Ideals, Simple rings	
4	HOMOMORPHISM S IN RINGS:	09
	Quotient Rings, Homomorphisms, kernel, fundamental theorems of	
	ring homomorphism, Embedding of Rings(statements), Maximal Ideal,	
	Prime ideals	

Recommended Book:

1 V. K. Khanna and S. K. Bhambri, A course in abstract algebra, 5th edition, Vikas publishing house pvt.ltd

Reference book:

1. J.B. Fraleigh and N.E. Brand, A course in abstract algebra, 8th edition pearson

2. Joseph A. Gallian, Contemporary Abstract Algebra (Fourth Edition) Narosa Publishing House.

MATHEMATICS-DSC-1003E2 Mathematics-Paper-VI Partial Differential Equation and Numerical Methods Theory: 72 Hours (90 lectures of 48 minutes)-Credits-4 (Marks-100)

Section I: Partial Differential Equation

Course Outcomes: On completion of the course, the students will be able to:

CO1: Understand the concept of formation of partial differential equation.

CO2: Understand the classification of partial differential equations.

CO3: Understand the Geometrical meaning of partial differential equation and method of solutions.

CO4: Understand transformation equations and its applications.

Unit	Title of unit &	Hours
s	Contents	Allotte
		d
1	UNIT: I PARTIAL DIFFERENTIAL EQUATIONS	06
	Definitions, Derivation of a partial order differential equation by the	
	elimination of constants, Derivation of partial differential equation	
-	by the elimination of arbitrary functions.	10
2.	UNIT:II NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS	10
	The integrals of the non-linear equation, the complete and particular	
	integrals, The singular integral, The general integral, The integral of the	
	linear equation, Equation equivalent to the linear equation, Lagrange's	
	solution of the linear equation, Verification of Lagrange's solution.	
3	GENERAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	10
	The linear equation involving more than two independent variables,	
	Geometrical	
	meaning of the linear partial differential equation, Special methods of	
	solution applicableto certain standard forms, General method of solution.	
4	UNIT: IV HIGHER ORSER PARTIAL DIFFERENTIAL EQUATIONS	10
	Partial equations of the second order, Examples readily solvable, General	
	method of solving Rr+Ss+Tt=V, The general linear partial equation of an	
	order higher than the first, The homogeneous equation with constant	
	coefficients: The complementary function, Solution when the auxiliary	
	equation has repeated or imaginary roots, The non-homogeneous	
	equation with constant coefficients: the complementary function, The	
	Poisson's equation.	

Recommended books:

1. Daniel A. Murray Introductory Course in Differential Equations Khosla Publishing House. **Reference book:** -

1. IAN N. SNEDDON, Elements of partial differential equation, Dover publication.

2.Dr. M.D. Raisinghania, Ordinary and Partial Differential Equation, Eighteenth revised edition 2016; S. Chand and company pvt.ltd. New Delhi.

Section II: Numerical Methods

Course Outcomes: On completion of the course, the students will be able to:

CO1: Learn about various interpolating methods to find numerical solutions.

CO2: Demonstrate the use of interpolation methods to find intermediate values in given graphical and/or tabulated data.

CO3: Use of numerical differentiation and integration

CO4: Learn to find the solution of ordinary differential equation by Euler, Taylor and Runge-Kutta methods

UNIT	Title of unit &	Hours
	Contents	Allotte
		d
1	NUMERICAL INTERPOLATION: (for unequal interval)	08
	Introduction, Lagrangian interpolating polynomial (formula only),	
	examples, Divided difference interpolation: Newton's divided	
	differences, divided difference table, examples finding divided	
	(differences of given data), Newton's divided difference form of	
	interpolating polynomial, examples	
2	NUMERICAL INTERPOLATION: (for equal interval)	10
	Forward interpolation: Newton's forward differences, forward	
	difference table. Newton's forward form of interpolating	
	polynomial (formula only), examples. Backward interpolation:	
	Newton's backward differences, backward difference table,	
	Newton's backward form of interpolating	
	polynomial (formula only), examples	
3	NUMERICAL DIFFERENTIATION AND INTGRATION:	10
	Numerical differentiation based on interpolation polynomial.	
	Numerical integration: Newton-Cotes formula, Basic Trapezoidal	
	rule (excluding thecomputation of error term), composite	
	Trapezoidal rule, examples, Basic Simpson's 1/3rd rule (excluding	
	the computation of error term), compositeSimpson's 1/3rd rule,	
	examples, Basic Simpson's 3/8th rule (excluding thecomputation	
	of error term), composite Simpson's 3/8th rule, examples.	
4	SOLUTION OF FIRST ORDER ORDINARY	08
	DIFFERENTIALEQUATION:	
	Euler's Methods, Modified Euler's Methods, Examples, Second	
	order Runge-Kutta method (formula only), examples, Fourth order	
	Runge-Kuttamethod (formula only), examples	

Recommended Books:

1. S.S. Sastry, Introductory Methods of Numerical Analysis, 3rd edition, Prentice Hall of India, 1999

Reference books:

1. Bhupendra Singh, Numerical Analysis, Pragati Prakashan.

2.Dr.P. Kandasamy & Others, Numerical Methods, S. Chand Publishing Ltd, New Delhi.

Semester: VI

MATHEMATICS-DSC-1003F1 Mathematics-Paper-VII Metric Spaces and Linear Algebra Theory: 72 Hours (90 lectures of 48 minutes)- Credits-4 (Marks-100) Section I: Metric Space

Course Outcomes: On completion of the course, the students will be able to:

CO1. Acquire the knowledge of notion of metric space, open sets and closed sets.

CO2. Demonstrate the properties of continuous functions on metric spaces,

CO3. Apply the notion of metric space to continuous functions on metric spaces.

CO4. Understand the basic concepts of connectedness, completeness and compactness of metric spaces

UNIT	Title of unit & Contents	Hours Allotte d
1	LIMIT AND METRIC SPACE: Limit of a function on the real line, Metric spaces, Limits in metricspaces.	10
2	CONTINUOUS FUNCTION ON METRIC SPACE: Functions continuous at a point on the real line, Reformulation, Functionscontinuous on a metric space, Open sets, Closed sets, Discontinuous functions on R ¹	10
3	CONNECTEDNESS AND COMPLETENESS: More about open sets, connected sets, bounded sets and totally boundedsets, Complete metric spaces	08
4	COMPACTNESS: Compact metric spaces, Continuous functions on compact metric spaces, Continuity of the inverse function, Uniform continuity	08

Recommended Books:

1. Richard R. Goldberg, Method of Real Analysis, Oxford and IBH publishing CO. PVT.LTD.

Reference Book:

1. S. Kumaresan, Topology of Metric Spaces, Narosa Publishing House.

Section II: Linear Algebra

Course Outcomes: On completion of the course, the students will be able to:

CO1: Understand the concepts of vector spaces, subspaces, bases, dimension and their properties.

CO2: Learn properties of inner product spaces and determine orthogonality in inner product spaces.

CO3: Learn basic concepts of linear transformation, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.

CO4: Familiarize characteristic roots and characteristic vectors.

UNIT	Title of unit &	HOURS
	Contents	ALLOTE
		D
1	VECTOR SPACES:	12
	Vector Spaces, Subspaces, Sum of Subspaces, Quotient Spaces,	
	Homomorphisms or Linear Transformations, Linear Span, Linear	
	Dependence and Independence	
2	INNER PRODUCT SPACES:	06
	Norm of a Vector, Inner product spaces, Orthogonality, Orthonormal Set	
3	LINEAR TRANSFORMATIONS:	10
	Algebra of Linear Transformations, Invertible Linear Transformations,	
	Matrix of a LinearTransformation, Dual Spaces, Transpose of a Linear	
	Transformation.	
4	EIGEN VALUES AND EIGEN VECTORS:	08
	Eigen Values and Eigen Vectors, Characteristic Polynomials,	
	Characteristic Polynomial of a Linear Operator	

Recommended Book:

1. V. K. Khanna and S. K. Bhambri, A course in abstract algebra, 5th edition, Vikas publishing house pvt ltd

Reference book:

1. Vivek Sahai & Vikas Bist, Linear Algebra (Second Edition) Narosa Publishing House.

2.Seymour Lipschutz & Mark Lipson, Linear Algebra (Third Edition) Schaum's Outlines TATA McGraw-Hilledition.

MATHEMATICS-DSC-1003F2 Mathematics-Paper-VIII Complex Analysis and Optimization Techniques Theory: 72 Hours (90 lectures of 48 minutes)- Credits-4 (Marks-100)

Section I: Complex Analysis

Course Outcomes: On completion of the course, the students will be able to:

CO1: Understand the significance of differentiability of complex functions leading to the understanding of Cauchy-Riemann equations.

CO2: Understand the exponential function, Logarithmic function,

Trigonometric function.

CO3: apply Cauchy integral formula to evaluate integrals.

CO4: Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residues and evaluate complex integrals using the residue theorem.

UNÎT	Title of unit &	Hours
	Contents	Allotte
		d
1	ANALYTIC FUNCTIONS:-	09
	Functions of a Complex Variables, Limits. Theorems on limits	l
	(Without Proof), Limits involving the point at infinity. Continuity.	1
	Derivatives, Differentiation formulas (Without Proof), Cauchy-	
	Riemann Equations, necessary and Sufficient	
	Conditions for differentiability (Only Statement and Examples), Polar	
	coordinates, Analytic functions, Harmonic functions.	
2	ELEMENTARY FUNCTIONS:-	07
	The Exponential functions, The Logarithmic function, Branches and	
	derivatives of logarithms, Some identities involving logarithms,	1
	Complex exponents,	
	Trigonometric functions	
3	INTEGRALS:-	11
	Derivatives of functions, Definite integrals of functions, Contours,	l
	Contour integral, Examples, Upper bounds for Moduli of contour	
	integrals, Anti- derivatives (Only Examples), Cauchy-Goursat	
	Theorem. Simply and multiply	l
	Connected domains. Cauchy integral formula, Derivatives of	l
	analytic functions. Liouville's Theorem and Fundamental Theorem	l
	of Algebra (Without Proof).	
4	SERIES:-	09
	Convergence of sequences and series (Theorems without proof),	
	Taylor's series (without proof), Laurent series (without proof),	
	examples only, Isolated singularpoints, Residues, Zeros of analytic	
	functions, zeros and poles.	1

Recommended Books:

1. James Ward Brown, Ruel V. Churchill, Complex Variables and Application, Mc Graw Hill Education – EighthEdition

Reference Books:

1.S. Ponnusamy, Foundation of complex analysis, Narosa Publishing House, - second Edition 2. H.S KASANA, Complex Variables Theory & Applications PHI Learning Private Ltd. New Delhi.

Section I: Optimization Techniques

Course Outcomes: On completion of the course, the students will be able to:

CO1: Analyse and solve linear programming models of real-

life situations.

CO2: Formulate and apply suitable methods to solve

problems.

CO3: Identify and select procedures for various sequencing, assignment, transportation problems.

CO4: Model competitive real-world phenomena using concepts from game theory and analyse pure and mixed strategy games.

UNIT	Title of unit & Contents	Hours Allotte
1	LINEAR PROCRAMMING PROBLEM	d
T	Pavision of L.D.D. cononical form standard form of L.D.D.	00
	Solution of L.P.P. by Simpley method and examples Solution of	
	L.P.P by Big – M method and examples	
2	TRANSPORTATION PROBLEM:	10
	Basics of Transportation problem, Basic Definitions, Initial	
	Solution: North - West corner method and examples, Matrix	
	minima method and examples, Vogel's approximation method and	
	examples. MODI method and examples, Unbalanced	
	transportation problem and examples	
3	ASSIGNMENT PROBLEM:	10
	Introduction to Assignment problem, Hungarian method and	
	examples, Unbalanced Assignment problem and examples,	
	Assignment problems with restrictions and examples.	
4	THEORY OF GAMES:	08
	Basics definitions, Saddle point and examples, Algebraic method	
	for 2×2 size game and examples, Arithmetic method for 2×2 size	
	game and examples, Principal of dominance, Dominance method	
	and examples, Sub-game method for	
	$2 \times n \& m \times 2$ size game and examples, Graphical method for $2 \times n \& m \times 2$	
	size game and examples	

Recommended Books:

1. S. D. Sharma: Operations Research, KedarNath RamNath Meerut, Delhi Reprint 2015. **Reference Books:**

1. Kanti Swarup, P.K.Gupta, Man Mohan, Operations Research, Sultan Chand and Sons.

Skill Enhancement Course SEC-SE Numerical Methods Credits:2 (60 Hours)

- 1. Bisection Method
- 2. Regula Falsi Method
- 3. Secant Method
- 4. Newton Raphson Method
- 5. Gauss Elimination Method
- 6. Gauss Jordan Method
- 7. Jacobi's Method
- 8. Gauss Seidal Method

Reference books:

- 1. Introductory Methods of Numerical Analysis, S.S. Sastry, 3rd edition, Prentice Hall of India, 1999
- 2. Bhupendra Singh, Numerical Analysis, Pragati Prakashann

Transportation problem and its mathematical formulation

Credits: 2(60 Hours)

Northwest-corner method, least cost method and Vogel approximation method for determination of starting basicsolution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem. Game theory: formulation of two-person zero sum games, solving twoperson zero sum games, games with mixed strategies, graphical solution procedure.

Reference:

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, Linear Programming and Network Flows, 2nd Ed., JohnWiley and Sons, India, 2004.

2. F. S. Hillier and G. J.Lieberman, Introduction to Operations Research, 9th Ed., Tata McGraw Hill, Singapore, 2009.

3. Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006.

1

MATHEMATICS LAB: DSC-1003 (Practical) Marks: 100

Core Course Practical In Mathematics

(CCPM-IV)Operational Research (Marks 50)

credits 04

SR. No.	Title of the experiment	Sessions
1	Graphical method for linear programming	1
	problems.	
2	Solution of LPP using Simplex method.	1
3	Solution of LPP using Big – M method	1
4	Transportation Problems [North west corner rule]	1
5	Transportation Problems [Lowest Cost Entry	1
	Method	
6	Transportation Problems [Vogel Approximation	1
	Method	
7	Transportation Problems [Test for Optimality MODI	1
	method	
8	Assignment Problems [Hungarian Method]	1
9	Assignment Problems [Travelling Salesman	1
	Problem	
10	Assignment Problems [Unbalanced	1
	Problem	
11	Two by two (2 X 2) games with saddle point.	1
12	Algebraic method of Two by two (2 X 2)	1
	games.	
13	Arithmetic method of Two by two (2 X 2)	1
	games.	
14	Dominance Method for games.	1
15	Sub Game Method for 2 X n, m X 2 games.	1
16	Graphical method for 2 x n games and m x	1
	2 games	
	Total	16

Recommended Books:

1. S. D. Sharma: Operations Research, KedarNath RamNath Meerut, Delhi Reprint 2015.

2. Kanti Swarup, P.K.Gupta, Man Mohan, Operations Research, Sultan Chand and Sons.

Core Course Practical In Mathematics

(CCPM-V)

Numerical Methods. (Marks 50) credits 04

Sr. No.	Title of the experiment	Sessio
		ns
1	Newton's forward interpolation	1
2	Newton's backward interpolation	1
3	Lagrange's interpolation	1
4	Newton's Divided difference interpolation	1
5	Newton's forward differentiation for Tabular Value	1
6	Newton's forward differentiation for Non- Tabular Value	1
7	Newton's backward differentiation for Tabular Value	1
8	Newton's backward differentiation for Non- Tabular Value	1
9	Trapezoidal rule	1
10	Simpson's 1/3rd rule	1
11	Simpson's 3/8th rule	1
12	Euler's Methos	1
13	Euler's Modified Method	1
14	Second order Runge-Kutta method	1
15	Fourth order Runge-Kutta method	1
16	Power method (Maximum Eigen Value)	1
	Total	16

Recommended Books:

1 Devi Prasad. An Introduction to Numerical Analysis (Third Edition), Narosa Publishing

- 2. S. S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India.
- 3. J. H. Mathews, Numerical Methods for Mathematics, Science and Engineering, Prentice Hall of India
- 4. K. Sankara Rao, Numerical Methods for Scientists and Engineers, Prentice Hall of India. India.
- 5. Bhupendra Singh, Numerical Analysis, Pragati Prakashan.

Core Course Practical In Mathematics (CCPM-VI)

Mathematical Computation Using Python

(Marks 50) credits 04

Sr.	Title of the experiment	Sessio
No.	-	ns
1	Introduction to Python	1
2	Expression and operators	1
3	Conditional statements	1
4	Looping and control statements	1
5	Functions	1
6	Modules and packages in Python	1
7	Operation on sets	1
8	Numerical Integration (Trapezoidal, Simpson's 1/3 rd & 3/8 th)	3
9	Roots of equations (Bisection, Newton-Raphson Method)	2
10	Initial value problem (Euler, Euler Modified, RK2, RK4)	4
	Total	16

Recommended Books:

- 1. Jaan Kiusalaas, Numerical Methods in Engineering with Python3, Cambridge University Press
- 2. Amit Saha, Doing Math with Python, No Starch Press, 2015.
- 3. Yashwant Kanetkar and Aditya Kanetkar, Let Us Python, BPB Publication, 2019

Core Course Practical in Mathematics (CCPM-VII)

Project, Study Tour Report and

Viva(Marks 50) credits 04

A. PROJECT

[30 Marks]

Project should be based on Mathematical modelling, Concepts and History of Mathematics, Mathematicians or any other relevant subjects.

B. STUDY TOUR

[05 Marks]

It is expected that the tour should contain at least renown academic institution so that the visiting students will be inspired to go for higher studies in Mathematics.

C. VIVA-VOCE (on the project report) [15 Marks]

Sem.	DSC	Marks	Evaluation	Sections	Answer Books	Standard of
						passing
V	1003E1	80	Semester	Two sections each of	As per	35%
			wise	40 marks	Instruction	(28 marks)
	1003E2	80	Semester	Two sections each of	As per	35%
			wise	40 marks	Instruction	(28 marks)
VI	1003F1	80	Semester	Two sections each of	As per	35% (28marks)
			wise	40 marks	Instruction	
	1003F2	80	Semester	Two sections each of	As per	35% (28marks)
			wise	40 marks	Instruction	

SCHEME OF MARKING (THEROY)

SCHEME OF MARKING (CIE) Continuous Internal Evaluation

Sem.	DSC	Marks	Evaluation	Sections	Answer Books	Standard of passing
V	1003E1	20	Concurrent	-	As per Instruction	35%
					_	(7 marks)
V	1003E2	20	Concurrent	-	As per Instruction	35%
						(7 marks)
VI	1003F1	20	Concurrent	-	As per Instruction	35%
						(7 marks)
VI	1003F2	20	Concurrent	-	As per Instruction	35%
					-	(7 marks)

SCHEME OF MARKING (PRACTICAL)

Sem.	DSC	Marks	Evaluation	Sections	Standard of passing
	CCPM IV	50	Annual	As per Instruction	35% (18 marks)
V AND VI	CCPM V	50	Annual	As per Instruction	35% (18 marks)
	CCPM VI	50	Annual	As per Instruction	35% (18 marks)
	CCPM VII	50	Annual	As per Instruction	35% (18 marks)

*A separate passing is mandatory

Nature of Question Paper:

Instruction:

- > All the questions are **compulsory**.
- > Figures to the right indicate *full* marks.
- > Draw neat labelled diagrams *wherever* necessary.
- ▶ Use of log table/calculator is allowed.

SECTION-I

Time: 2 hours		Total Marks: 35		
Q. 1) A) Cho	ose correct alternative.			05
i)				
a)	b)	c)	d)	
ii)				
a)	b)	c)	d)	
iii)				
a)	b)	c)	d)	
iv)				
a)	b)	c)	d)	
v)				
a)	b)	c)	d)	

B. Fill in the Blanks.

02

i)

ii)

Q.2 Attempt any two. i)

ii)

iii)

Q.3Attempt any Three. i)

- ii)
- iii)
- iv)
- v)

12

SCHEME OF MARKING

Paper No.	Internal Evaluatio	End semester theory	Total
	n	Examination	
DSC-1003 E1(Section I)	15	35	50
DSC-1003 E1(section II)	15	35	50
DSC-1003 E2(section I)	15	35	50
DSC-1003 E2(section II)	15	35	50
DSC-1003 F1(section I)	15	35	50
DSC-1003 F1(section II)	15	35	50
DSC-1003 F2(section I)	15	35	50
DSC-1003 F2(section II)	15	35	50

Structure of B.Sc. III (Semester V & VI) (Mathematics)

B.Sc. III	Subject (Core Course)	No.	Hour	Credit
		Of	s	s
		Lect.		
Semester	Mathematics: -	6	4	4
-	Real Analysis and Modern Algebra			
V				
Semester	Mathematics: -	6	4	4
-V	Partial Differential Equations and			
	NumericalMethod			
Semester	Mathematics: -	6	4	4
-VI	Metric spaces and Linear Algebra			
Semester	Mathematics: -	6	4	4
-VI	Complex Analysis and Optimization	_		
	Techniques			
Annua	CCPM(IV)	4	3.2	4
1	Operations Research			
Practica	CCPM(V)	4	3.2	4
1	Numerical Methods			
1	CCPM(VI)	4	3.2	4
	Python Programming			
	CCPM(VII)	4	32	4
	Project, Study tour, Viva	-	0.1	-
Annu	Skill Enhancement course (SE)	2	1.6	2
al				
SEC	Skill Enhancement course (SF)	2	1.6	2
SEC	Transportation problem and its			
	mathematical formulation			
			1	1