Dissemination of Education for Knowledge, Science and Culture" - Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

DEPARTMENT OF MATHEMATICS

M.Sc. Part - II Semester-II & IV

SYLLABUS

Under Choice Based Credit System

to be implemented from Academic Year 2022-23

M.Sc. II (Sem -III and IV) Mathematics Course Structure Semester III

Paper No.	Course code	Title of Old Paper	Title of New Paper	Percentage of Change (%)	No. of Credits
I	CC- 1180C	Functional Analysis	Functional Analysis	0	5
II	CC-1181C	Advanced Discrete Mathematics	Advanced Discrete Mathematics	0	5
III	CBC-1182C	Number Theory	Lattice Theory-I	100	5
IV	CBC-1183C	Graph Theory	Number Theory	100	5
V	CBC-1184C	Operational Research-I	Operational Research-I	0	5
VI	CBC-1185C	Lattice TheoryI	Fuzzy Mathematics -I	100	5
VII	CBC-1186C	Dynamical System -I	Dynamical System -I	0	5
VIII	CBC-1187C	Commutative Algebra	Commutative Algebra	0	5

Semester IV

Paper No.	Course code	Title of Old Paper	Title of New Paper	Percentage of Change (%)	No. of Credits
I	CC-1190D	Field Theory	Field Theory	0	5
II	CC-1191D	Integral Equations	Measure and integration	100	5
III	CBC-1192D	Algebraic Number Theory	Algebraic Number Theory	0	5
IV	CBC-1193D	Graph Theory II	Fuzzy Mathematics -II	100	5
IV	CBC-1194D	Operational Research II	Operational Research-II	0	5
V	CBC-1195D	Fluid Dynamic	Introduction to Data Science	100	5
VI	CBC-1196D	Dynamical System II	Dynamical System-II	0	5
VII	CBC-1197D	Combinatorics	Combinatorics	0	5
VIII	CBC-1198D	Fractional Differential Equation	Fractional Calculus	0	5

M.Sc. Mathematics Part – II CBCS Semester – III Paper– I Functional Analysis (CC-1180C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 To familiarize the students with the fundamental topics, principles and methods of functional analysis
- CO2 Understand and apply fundamental theorems from the theory of normed and Banach spaces, including the Hahn-Banach theorem, the open mapping theorem, the closed graph theorem.
- CO3 Able to understand Hilbert space and its application and acquire knowledge of orthogonal sets and operators
- CO4 Understand Adjoint of an operator on a Hilbert space and concept of projection, self adjoint, normal and unitary operator.

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Normed linear spaces, Banach spaces, Quotient spaces,	15	1
	Continuous linear transformations, Equivalent norms, Finite		
	dimensional normed spaces and properties, Conjugate space		
	and separability, The Hahn-Banach theorem and its		
	consequences.		
Module 2	Second conjugate space, the natural embedding of the	15	2
	normed linear space in its second conjugate space, Reflexivity		
	of normed spaces, Weak * topology on the conjugate space.		
	The open mapping theorem, Projection on Banach space, the		
	closed graph theorem, the conjugate of an operator, the		
	uniform boundedness principle.		
Module 3	Hilbert spaces: examples and elementary properties,	15	1
	Orthogonal complements, The projection theorem,		
	Orthogonal sets, The Bessel's inequality, Fourier expansion		
	and Parseval's equation, separable Hilbert spaces, The		
	conjugate of Hilbert space, Riesz's theorem, The adjoint of		
	an operator.		
Module 4	Self adjoint operators, Normal and Unitary operators,	15	1
Wioduic 4	Projections, Eigen values and eigenvectors of an operator		1
	on a Hilbert space, The determinants and spectrum of an		
	operator, The spectral theorem on a finite dimensional		
	Hilbert space.		
	Timbert space.		

- 1. Erwin Kreyszig: Introductory Functional Analysis with Applications, John Wiley and Sons, 1978
- 2. G. Bachman and L. Narici: Functional Analysis, Academic Press, 1972.
- 3. A. E. Taylor: Introduction to Functional analysis, John Wiley and sons,1958.
- 4. J. B. Convey, A course in Functional Analysis, Springer-Verlag, 1985.
- 5. B. V. Limaye: Functioned Analysis, New age international, 1996

M.Sc. Mathematics Part - II CBCS Semester - III Paper- II Advanced Discrete Mathematics (CC-1181C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Solve discrete probability problems and use set to solve problems in combinatorics and probability theory.
- CO2 Determine if a given graph is simple or a multigraph, directed or undirected graph, cyclic or acyclic, and determine the connectivity of a graph.
- CO3 To determine if graph has a Euler or a Hamiltonian path or circuit, Define Pigeonhole principle and solve problems related to this.

CO4 Identify the types of Lattices and find supremum and infimum.

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Graph Theory: Definition, examples and properties, Simple graph, Graph isomorphism, Bipartite graphs, Complete Bipartite graph, regular graph, sub-graphs spanning subgraph, Edge deleted sub-graph, Vertex deleted sub-graph, Union and intersection of two graphs, complements of a graph, self-complementary graph, paths and cycles in a graph, Eccentricity, radius and diameter of a connected graph, Peterson graph, Wheel graph. Isomorphism of Graphs. First theorem of graph theory.	15	2
Module 2	The Matrix representation of a graph, Adjacency matrix and Incidence matrix of a graph, Definition and simple properties of a tree, bridges, spanning trees, Inclusion exclusion principle. Simple examples on Inclusion exclusion principal Pigeonhole principle, examples on Pigeonhole principle.	15	1
Module 3	Discrete numeric functions and sum and product of two numeric functions, generating functions, Linear recurrence relations with constant coefficients Particular solutions of linear recurrence relations, Total solutions.	15	1
Module 4	Ordered sets and lattices Hasse diagrams of posets, Supremum and infimum, Isomorphic ordered sets, well- ordered sets, Lattices, Bounded lattices, Distributive lattices, Complements complemented lattices, Boolean algebra, Basic definitions, Basic theorems, duality, Boolean algebras as lattices	15	1

- 1. Lipschitz and Mark Lipson: Discrete Mathematics (second edition), Tata McGraw Hill Publishing Company Ltd. New Delhi
- 2. Gorrett Birkhoff: Lattice Theory 2. Rich and Brualdi: Combinatoric
- 3. John Clark and Derek Holton: A first book at Graph Theory Applied Publishers Ltd.

4. C. T. Liu: Discrete Mathematics

M.Sc. Mathematics Part - II CBCS Semester - III Paper- III Lattice Theory-I (CBC-1182C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Understand the relation between posets and lattices
- CO2 Study the basic properties and characterization of lattice
- CO3 Understand and apply the distributive complemented lattice
- CO4 Design analyze and implement the concepts of stone's theorem and its consequence, pseudo complemented lattices and it's dual

Unit	Syllabus	Lectures/ Teaching Hours	Credi ts
Module 1	Basic concepts. Posets, Definition and examples of posets. Two definitions of lattices and their equivalence, examples of lattices. Description of Lattices, some algebraic concepts. Duality principle, Special elements. Homomorphism, Isomorphism and isotone maps.	15	1
Module 2	Special types of Lattices. Distributive lattices – Properties and characterizations. Modular lattices – Properties and characterizations. Congruence relations. Boolean algebras – Properties and characterizations.	15	1
Module 3	Ideal theory, Ideals and filters in lattices. Lattice of all ideals I(L). Properties and characterizations of I(L). Stone's theorem and its consequences	15	1
Module 4	Stone algebra, Pseudo complemented lattices. S(L) and D(L) – special subsets of pseudo complemented lattices. Distributive pseudo complemented lattice. Stone lattices – properties and characterizations	15	2

- 1. George Gratzer: General lattice theory, Academic Prress publications, 1978
- 2. B. V. Davey and H. A. Priestley: Introduction to Lattices and Order, Cambridge University Press, Second edition, 2002.
- 3. Lattice theory by G. Birkhoff, Amer. Math. Soc. Coll. Publications, Third Edition 1973

M.Sc. Mathematics Part - II CBCS Semester - III Paper -IV Number Theory (CBC-1183C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Learn more advanced properties of primes and pseudo primes.
- CO2 Able to apply Mobius Inversion formula to number theoretic functions.
- CO3 Able to explore basic idea of cryptography.
- CO4 Understand concept of primitive roots and index of an integer relative to a given primitive root.

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Review of Divisibility: The division algorithm,	15	1
	G.C.D., Euclidean algorithm, Diophantine equation		
	ax + by = c, Primes and their distribution:		
	Fundamental theorem of arithmetic, The Goldbach		
	Conjecture.		
Module 2	Congruences: Properties of congruences, Linear	15	1
	congruences, Chinese Remainder Theorem Special		
	divisibility tests, Fermat's theorem, Wilsons's theorem		
	and applications		
Module 3	Number Theoretic Functions: Euler's phi function, Euler's	15	1
	theorem, Greatest integer function, the functions τ and σ ,		
	Mobius function and Mobius inversion formula,		
	Properties of these functions and their inter relations.		
Module 4	Primitive roots: The order of an integer modulo n,	15	2
	Primitive roots of primes, composite numbers		
	having primitive roots, The theory of indices, The		
	quadratic reciprocity law: Eulerian criteria, The		
	Legendre symbol and its properties, quadratic		
	reciprocity, quadratic reciprocity with composite		
	moduli.		

- 1. D. M. Burton: Elementary Number Theory, Universal book stall, New Delhi.
- 2. S. B. Malik: Basic Number theory Vikas publishing House
- 3. George E. Andrews: Number theory, Hindustan Pub. Corp. (1972)
- 4. Niven, Zuckerman: An Introduction to theory of numbers. John Wiley & Sons
- 5. S. G. Telang, Number Theory, Tata Mc. Graw-Hill Publishing Co., New Delhi

M.Sc. Mathematics Part - II CBCS Semester - III Paper-V Operational Research -I (CBC-1184C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Able to identify convex set and convex functions and construct linear integer programming models discuss the solution techniques
- CO2 Solve multi -level decision problems using dynamic programming method.
- CO3 Identify the appropriate methods to solve the different kinds of Optimization Problems.
- CO4 Formulate the nonlinear programming models and able to find solution methods for solving the nonlinear and linear optimization problems.

Unit	Syllabus	Lectures/	Credit
		Teaching	s
		Hours	
Module 1	Convex sets and their properties. Lines and hyper	15	1
	planes convex set Important Theorems, polyhedral		
	convex set, convex combination of vectors, convex hull,		
	convex polyhedron, convex cone, simplex and convex		
	function, General formulation of linear programming		
	Matrix form of LP problem, definitions of standard		
	LPP., Fundamental Theorem of linear programming.		
Module 2	Simplex method, computational procedure of simplex method,	15	2
	problem of degeneracy and method to resolve degeneracy.		
	Revised simplex method in standard form I, Duality in linear		
	programming duality theorems, Integer linear programming,		
	Gomory's cutting plane method, Branch and Bound method.		
Module 3	Dynamic programming. Bellman's principle of Optimality,	15	1
	solution of problems with a finite number of stages.		
	Application of dynamic programming in production,		
	inventory control and linear programming.		
Module 4	Nonlinear programming unconstrained problems of	15	1
	maximum and minimum Lagrangian method Kuhn Tucker		
	necessary and sufficient conditions, Wolfe's method, Beale's		
	method.		

- 1. S. D. Sharma: Operations Research, Kedar Nath Ram Noth and co
- 2. Kanti Swarup, P. K. Gupta and Manmohan : Operations research, S. Chand& Co.
- 3. Hamady Taha: Operations Research: Mac Millan Co.
- 4. S. D. Sharma: Nonlinear and Dynamic programming KedarNath Ram Nath and Co. Meerut
- 5. R. K. Gupta: Operations Research Krishna Prakashan Mandir, Meeru
- 6. G. Hadley: Linear programming, Oxford and IBH Publishing Co.

M.Sc. Mathematics Part - II CBCS Semester - III Paper-VI Fuzzy Mathematics-I (CBC-1185C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Acquire the knowledge of notion of crisp sets and fuzzy sets
- CO2 Understand the basic concepts of crisp set and fuzzy sets
- CO3 Develop the skill of operation on fuzzy sets and fuzzy arithmetic's
- CO4 Demonstrate the technologies of fuzzy sets and fuzzy numbers

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Fuzzy sets and crisp sets, examples of fuzzy sets, types	15	2
	of fuzzy sets, standard operations, cardinality, degree of		
	subset hood, level cuts and its properties, representation		
	of fuzzy sets, decomposition theorems, extension		
	principle, properties of direct and inverse images of		
	fuzzy sets		
Module 2	Operations on fuzzy sets, types of operations, fuzzy	15	1
	complement, equilibrium and dual point Increasing and		
	decreasing generators, fuzzy intersection: t-norms.		
Module 3	Fuzzy union t-conorms, characterization theorem of t-	15	1
	conorm, combination of operators, aggregation		
	operations, ordered weighted averaging operations.		
Module 4	Fuzzy numbers, characterization theorem, linguistic	15	1
	variables, arithmetic operations on intervals, arithmetic		
	operations on fuzzy numbers, lattice of fuzzy numbers,		
	fuzzy equations		

- 1. George J. Klir, Bo Yuan, Fuzzy sets and Fuzzy Logic. Theory and Applications, PHI, Ltd.2000
- 2. M. Grabish, Sugeno, and Murofushi Fuzzy Measures and Integrals: Theory and Applications, PHI, 1999
- 3. H.J.Zimmerermann, Fuzzy Set Theory and its Applications, Kluwer, 1984.
- 4. M. Hanss, Applied Fuzzy Arithmetic, An Introduction with Engineering Applications, Springer- Verlag Berlin Heidelberg 2005.
- 5. M. Ganesh, Introduction to Fuzzy Sets & Fuzzy Logic; PHI Learning Private Limited, New Delhi 2011.
- 6. Bojadev and M. Bojadev, Fuzzy Logic and Application, World Scientific Publication Pvt.Ltd. 2007

M.Sc. Mathematics Part - II CBCS Semester - III Paper-VII Dynamical System -I (CBC-1186C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Classify equilibrium points of the dynamical system
- CO2 Construct bifurcation diagrams and analyze the system for different values of parameter.
- CO3 Relate the qualitative properties of the system with the eigen values of coefficient matrix.

CO4 Construct the exponential of a matrix and apply it to solve the dynamical system.

Unit	Syllabus	Lectures/ Teaching Hours	Credit s
Module 1	First order systems- Qualitative Analysis: Introduction: First order linear systems, equilibrium points- classification, stability, bifurcation, phase portraits, Scalar autonomous non- linear systems, Stability (linearization, equilibrium points), phase portraits- slope fields, Examples, two-parameter family.	15	1
Module 2	Planer systems- Qualitative Analysis, Second order linear ODE as a system of first order ODEs, preliminaries from algebra, eigenvalues and eigenvectors, solution of planar linear systems, Phase portraits for planar systems: Real distinct eigenvalues, complex eigenvalues, repeated eigenvalues, changing co- ordinates, Classification of planar systems: the trace-determinant plane	15	2
Module 3	Higher order systems: Preliminaries from linear algebra, Higher order ODEs as a vector differential equation, real distinct, complex and repeated eigenvalues, The Exponential of a Matrix, Solving a system of first order differential equations by using exponential of a matrix, Non- autonomous systems of the form X ' (t) = AX(t) + G(t), Variation of parameters.	15	1
Module 4	Discrete dynamical systems: Introduction to the discrete maps (iterative maps), orbit, periodic points, cobweb plots, Fixed points of a map, stability analysis of a fixed point (sink, source, saddle), Bifurcation and chaos: Standard examples (Logistic map, tent map, doubling map).	15	1

Reference Books:

1. M. Hirsch, S. Smale and R. L. Devaney: Differential equations, dynamical

systems, and an introduction to chaos, Elsevier Academic Press, USA, 2004

M.Sc. Mathematics Part - II CBCS Semester - III Paper-VIII Commutative Algebra (CBC-1187C)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Classify the ideals to solve the related problems.
- CO2 Understand various radicals and know Hilbert basis theorem and apply it to other development
- CO3 Use Nakayama Lemma for further development in Noetherion Rings.
- CO4 Derive the Krull intersection theorem.

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Rings and ring homomorphism, Ideals. Quotient rings,	15	1.5
	Zero divisors. Nilpotent elements. Units, Prime ideals		
	and Maximal ideals, Nilradicals and Jacobson radical,		
	Operations on ideals, Extension and contraction		
Module 2	Modules and modules homomorphisms, Submodules	15	1.5
	and quotient modules , Operations On submodules		
	Direct sum and product Finitely generated modules		
	,Exact sequences		
Module 3	Tensor product of modules, Restriction and extension of	15	1
	scalars, Exactness properties Of the tensor product,		
	Algebras of tensor products		
Module 4	Rings and modules of fractions, Local properties,	15	1
	Extended and contracted ideals in rings of		
	fractions, primary decomposition		

- 1. M. F. Atiyah and I. G. MacDonald Introduction to commutative Algebra, Addison Wesley publishing company
- 2. M.D. Larsen and P. J. McCarthy; Multiplicative theory of ideals, Academic press,1971
- 3. D.G. Nortcot Ideal theory, Cambridge University press,1953

M.Sc. Mathematics Part – II CBCS Semester – IV Paper-I Field Theory (CC-1190D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Apply the knowledge of algebra to attain a good mathematical maturity and enables to build mathematical thinking and reasoning
- CO2 Identify and analyse different types of algebraic structures such as algebraically closed fields, splitting fields, finite field extension to understand and use the fundamental results in Algebra
- CO3 Design analyse and implement the concepts of Gauss lemma, separable extension etc.
- CO4 Identify the challenging problems in advanced algebra to pursue further research

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Field Extensions Extension of a field, Algebraic	15	1
	extensions, algebraically closed fields, Derivatives and		
	multiple roots, Finite Fields		
Module 2	Galois Theory Separable and normal extensions,	15	1.5
	Automorphism groups and fixed fields, Fundamental		
	theorem of Galois theory		
Module 3	Finite Fields Prime fields, Fundamental theorem of	15	1
	algebra, Cyclic extensions, Cyclotomic extensions		
Module 4	Applications of Galois theory Constructions by ruler	15	1.5
	and compass, Solvable groups, Polynomials solvable		
	by radicals		

- 1. U. M. Swamy, A. V. S. N. Murthy, Algebra: Abstract and Modern, Pearson Education, 2012
- 2. Nathan Jacobson, Basic Algebra I, second edition, W. H. Freeman and company, New York
- 3. M. Artin, Algebra, PHI, 1996.
- 4. N. Herstein, Topics in Algebra, Wiley Eastern Ltd.
- 5. Bhattacharya, Jain and Nagpal, Basic Abstract Algebra, 2nd edition, Narosa Publishing House, New Delhi
- 6. John Fraleigh: A first course in Abstract Algebra (3rd edition) Narosa publishing house, New Delhi.

M.Sc. Mathematics Part – II CBCS Semester – IV Paper-II Measure and Integration (CC-1191D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Understand algebra of sets, open and closed sets of real number and outer measure and measurable sets
- CO2 Understand the abstract measure theory and definition and main properties of the integral
- CO3 Able to construct Lebesgue's measure on the real line and in n-dimensional Euclidean space.
- CO4 Able to use the concept of measure theory to solve the problems related to probability theory, stochastic calculus and functional analysis

Unit	Syllabus	Lectures/	Credi
		Teaching Hours	ts
Module 1	Open Sets, Closed Sets and Borel Sets, Lebesgue Outer Measure, The sigma algebra of Lebesgue Measurable Sets, Countable Additivity, Continuity and Borel- Cantelli Lemma, non- measurable set.	15	1
Module 2	Sums, Product and Composition of Measurable Functions, Sequential Pointwise limits and Simple Approximation. Littlewood's Three Principles, Egoroff's Theorem and Lusin's Theorem, Lebesgue Integration of a Bounded Measurable Function, Lebesgue Integration of a Nonnegative Measurable Function.	15	1.5
Module 3	The General Lebesgue Integral, Characterization of Riemann and Lebesgue Integrability, Differentiability of Monotone Functions, Lebesgue's Theorem, Functions of Bounded Variations: Jordan's Theorem.	15	1
Module 4	Absolutely Continuous Functions, Integrating Derivatives: Differentiating Indefinite Integrals, Normed Linear Spaces, Inequalities of Young, Holder and Minkowski, The Riesz-Fischer Theorem.	15	1.5

- 1. Royden H. L., Fitzpateick P.M., Real Analysis. (2009) 4th edition. Prentice Hall of India, New Delhi
- 2. G. deBarra. Measure Theory and Integration. (1981) Wiley Eastern Ltd.
- 3. Rana, I. K. An Introduction to Measure and Integration. (1997) Narosa Book Company.
- 4. Berberian, S. K. Measure and Integration. (1965) McMillan, New York.
- 5. Jain P. K. and Gupta V. P., Lebesgue measure and Integration, (1986), Wiley Easter

Limited.

6. Rudin W., Principles of Mathematical Analysis, (1964) McGraw-Hill Book Co

M.Sc. Mathematics Part – II CBCS Semester – IV Paper-III Algebraic Number Theory (CC-1192D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Understand The concept (definition and significance) of algebraic numbers and algebraic integers.
- CO2 Understand and clearly define number fields and their ring of integers, in particular quadratic number fields and cyclotomic number fields.
- CO3 Able to factorize an algebraic integer into irreducible and find the ideals of an algebraic number ring.

CO4 Able to compute the class groups and the group of units of a number field.

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Revision of rings, polynomial rings and fields, Field	15	1
	extensions, Symmetric polynomials, Modules, Free		
	Abelian groups.		
Module 2	Algebraic Numbers, Algebraic number fields, Conjugates	15	1.5
	and Discriminants, Algebraic integers, Integral Bases,		
	Norms and Traces, Ring of integers, Quadratic fields,		
	Cyclotomic fields.		
Module 3		15	1
	Factorization into irreducible, Noetherian rings,		
	Dedekind rings, Examples of Non- Unique factorization		
	into irreducible, Prime factorization, Euclidean Domains,		
	Euclidean quadratic		
	fields.		
Module 4		15	1.5
	Ideals, Prime factorization of ideals, Norm of an		
	ideal, Nonunique factorization in cyclotomic fields,		
	Two-squares theorem, Four-squares theorem, class		
	groups and class numbers, Finiteness of the Class		
	groups.		
DaCamara an Da	-1		

- 1. I.N. Stewart & D.O. Tall, Algebraic Number Theory, Academic press.
- 2. N. Jacobson, Basic Algebra I, Hindustan Publishing Corporation (India), Delhi.
- 3. P. Samuel, Algebraic Theory of Numbers, Hermann, Paris (1970).
- 4. Mathematical Pamphlet, Algebraic Number Theory, TIFR, Bombay.
- 5. Paulo Ribenboim, Classical Theory of Algebraic Numbers, Springer, New York (2001).
- 6. N.S. Gopalkrishnan, University Algebra, New Age International (P) Ltd. Publishers.

M.Sc. Mathematics Part - II CBCS Semester - IV Paper-IV Fuzzy mathematics -II (CC-1193D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Acquire the concept of fuzzy relations
- CO2 Understand the basic concepts of fuzzy logic and fuzzy algebra
- CO3 Construct approximate solutions of fuzzy relation equations
- CO4 Solve problems in Engineering and medicine

Syllabus	Lectures/	Credi
	Teaching	ts
	Hours	
Projections and cylindrical extensions, binary fuzzy	15	1.5
relations on single set, fuzzy equivalence relations,		
fuzzy compatibility relations, fuzzy ordering relations,		
fuzzy morphisms sup-i composition and inf-wi		
composition		
Fuzzy relation equations, problem partitioning, solution	15	1.5
methods, fuzzy relational equations based on sup-i and		
inf-wi compositions, approximate solutions		
Fuzzy propositions, fuzzy quantifiers, linguistic hedges,	15	1
and quantified propositions.		
Nonenecificity of Crien Sets Nonenecificity of Fussy	15	1
	Projections and cylindrical extensions, binary fuzzy relations on single set, fuzzy equivalence relations, fuzzy compatibility relations, fuzzy ordering relations, fuzzy morphisms sup-i composition and inf-wi composition Fuzzy relation equations, problem partitioning, solution methods, fuzzy relational equations based on sup-i and inf-wi compositions, approximate solutions	Projections and cylindrical extensions, binary fuzzy relations on single set, fuzzy equivalence relations, fuzzy compatibility relations, fuzzy ordering relations, fuzzy morphisms sup-i composition and inf-wi composition Fuzzy relation equations, problem partitioning, solution methods, fuzzy relational equations based on sup-i and inf-wi compositions, approximate solutions Fuzzy propositions, fuzzy quantifiers, linguistic hedges, inference from conditional fuzzy propositions, qualified and quantified propositions. Nonspecificity of Crisp Sets, Nonspecificity of Fussy

- 1. George J Klir, Bo Yuan, Fuzzy Sets and Fuzzy Logic. Theory and applications, PHI.Ltd. (2000).
- 2. M. Grabish, Sugeno, and Murofushi, Fuzzy Measures and Integrals: Theory and Applications PHI,1999
- 3. John Mordeson, Fuzzy Mathematics, Springer, 2001
- 4. H.J. Zimmerermann, Fuzzy set: Theory and its Applications, Kluwer, 1984.
- 5. M. Ganesh: Introduction to Fuzzy sets & Fuzzy Logic; PHI Learning Private Limited, New Delhi, 2011.

M.Sc. Mathematics Part - II CBCS Semester - IV Paper-V Operational Research -II (CC-1194D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Decide an optimal replacement period/policy for a given item/equipment/machine
- CO2 Understand the various selective inventory control techniques and its applications. Capability to develop deterministic inventory models
- CO3 Understand the mathematical modeling of queuieng systems To apply and extend queueing models to analyze real world systems.
- CO4 Understand application of PERT and CPM techniques and able to construct network diagrams

Unit	Syllabus	Lectures/ Teaching Hours	Credi ts
Module 1	Replacement Problems, Failure mechanism of items, Replacement policy for items whose maintenance cost increases with time and money values is constant, Group replacement of items that fail completely	15	1
Module 2	Inventory – Cost involved in inventory problems, variables in inventory problem, symbols in inventory concept of EOQ, Methods with calculus method ,Model I (a) The economiclot size system with uniform demand, Model I (b) Economic lot size with different rates of demand in different cycles.,Model I (c) Economic lot size with finite Rate of Replenishment.,(EOQ production model) EOQ model with shortages , Model II(a) The EOQ with constant rate of demand, scheduling, time constant.	15	2
Module 3	Queuing Theory, Queuing systems, Queuing Problems: transient and steady states, traffic intensity, Probability distributions in Queuing systems Poisson process, Properties, Exponential process, Classification of Queuing Models, Model I: $(M/M/I)$: $(\infty/FCFS)$, Model II (a): General Erlang queuing model.	15	1
Module 4	Information Theory: Communication process, Quantitative measure of information, A binary unit of information, measure of uncertainty of entropy, basic properties of entropy function (H) Joint and conditional entropies, Uniqueness theorem, Chanel capacity, efficiency and redundancy Encoding, Shannon Fano encoding procedure, PERT / CPM: Applications of PERT / CPM techniques, Network diagram, representations. Rules for constructing the	15	1

Network diagram, determination of the critical path		

- 1. S.D.Sharma: Operations Research Kedarnath and co. 1999.
- 2. KantiSwarup ,P.K.Gupta and Manmohan : Operations research, S.Chand& Co.
- 3. HamadyTaha: Operations Research: Mac Millan Co.
- 4. R.K.Gupta: Operations Research Krishna Prakashan Mandir, Meerut

M.Sc. Mathematics Part – II CBCS Semester – IV Paper-VI Introduction to Data Science (CC-1195D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Having an ability to apply mathematics and science in AI and machine learning applications
- CO2 Having computational thinking (Ability to translate vast data into abstract concepts and to understand database reasoning)
- CO3 Having problem-solving ability- solving social issues and engineering problems
- CO4 Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	Module 1 Data science in a big data world: Benefits and uses of data science and big data, Facts of data, The data		2
	science process, The big data ecosystem and data		
	science The data science process: Overview of the		
	data science process, Retrieving data, Cleansing,		
	integrating, and transforming data, Exploratory data		
	analysis		
Module 2	Machine learning: What is the machine learning, The	15	1
	modelling process, Types of machines learning, Semi-		
	supervised learning		
Module 3	Handling large data: General technique for handling large volume data, General programming tips for dealing with	15	1
3.5. 1. 1. 4	large data sets, Case study predicting malicious URLs	45	1
Module 4	First step in big data: Distributing data storage and	15	1
	processing with frameworks, Case study: Assessing		
	risk		

- 1. Davy Cielen, Arno D. B. Meysman, Mohmed Ali, Introduction to data science, Manning Publications Co., 1st edition, 2016
- 2. Trevor Hastie, Robert Tibshirani An Introduction to Statistical Learning: with Applications in R, Gareth James , Springer, 1st edition, 2013
- 3. Ethem Alpaydin, Introduction to Machine Learning, Third Edition 2018 PHI Learning Private Limited

M.Sc. Mathematics Part - II CBCS Semester - IV Paper-VII Dynamical System II (CC-1196D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Test for the existence and uniqueness of solution of nonlinear system.
- CO2 Relate the stability of the system with its linearization.
- CO3 Distinguish between stable and unstable sets corresponding to the given system.
- CO4 Identify the chaotic behavior in the system by using Lyapunov exponents.

Unit	Syllabus	Lectures/ Teaching Hours	Credi ts
Module 1	Basic concepts of nonlinear dynamics: Introduction, Historical developments, Autonomous system of nonlinear ODEs: fundamental existence and uniqueness of solution, dependence of solution on initial conditions and parameters, The maximal interval of existence.	15	1
Module 2	Stability analysis: The flow defined by a differential equation, Linearization, Stable manifold theorem, Hartman Grobman theorm, Stability and Lyapunov functions, Bifurcation.	15	1
Module 3	II Chaos: Concept, properties, Limit sets and attractors, Poincare-Bendixson theorem, The Poincare map, Lyapunov exponents in flows, Numerical computation of Lyapunov exponents, Examples: Lorenz system, Chua circuit, Rossler attractor, Forced oscillators, Chaos synchronization.	15	1.5
Module 4	Applications and computer experiments: Application of chaos to secure communication, Introduction to fractals, Use of computer software's to solve problems in Dynamical Systems: Solving linear and nonlinear systems, data visualization-2D and 3D plots, vector field plots, chaotic phase portraits, solving discrete systems- cobweb plots.	15	1.5

- 1. Perko Differential Equations and Dynamical Systems, Springer, New York.
- 2. Alligood, Sauer and Yorke Chaos an introduction to dynamical systems, Springer, New York.

- 3. M. Hirsch, Smale and R.L. Devaney Differential equations, dynamical systems, and an introduction to chaos, Elsevier Academic Press, USA, 2004.
- 4. Strogatz, Nonlinear dynamics and chaos, , Perseus Books, New York.
- 5. Wiggins, Introduction to applied nonlinear dynamics and chaos, Springer, New York.
- 6. Arrowsmith and Place Dynamical systems: differential equations, maps and chaotic behavior, Chapman and Hall, London. (Applications)

M.Sc. Mathematics Part - II CBCS Semester - IV Paper-VIII Combinatorics (CC-1197D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Students will familiar with fundamental combinatorial structures than naturally appears in various other field of mathematics.
- CO2 Learn how to use those structure to represent mathematical applied questions.
- CO3 Able to use generating function to solve a variety of combinatorial problems.
- CO4 Identify the challenging problems in arrangement and selections.

Unit	Syllabus	Lectures/	Credi
		Teaching	ts
		Hours	
Module 1	The sum Rule and the product Rule, Permutations and combinations, The Pigeonhole Principle, Ramsey Numbers, Catalan Numbers, Stirling Numbers.	15	1
Module 2		15	1.5
	Generalized Permutations and combinations,		
	Multinomial Theorem, The Inclusion – Exclusion		
	principle, Sieve's formula, Derangements, System of		
	Distinct Representatives (SDR), Combinatorial Number theory.		
Module 3		15	1.5
	Rook- Polynomial, Ordinary and Exponential		
	generating functions, Partitions of a positive integer,		
	Recurrence Relations, Fibonacci sequence.		
Module 4	Group Theory in Combinatorics, The Burnside	15	1
	Frobenius Theorem, Permutation Groups and Their		
	Cycle Indices, Polya's Enumeration Theorems.		

- 1. V.K. Balakrishnan Schum's Outline of Theory and problems of combinatorics. Schum's Outline
 - Series Mc. Grew Hill INC
- 2. Alan Tucker Applied Combinatorics. John Willey Sons.
- 3. Richard A Broadly, Introductory combinatorics New Holland.
- 4. Sharad Sane- Combinatorial Techniques-Hindustan Book Agency

M.Sc. Mathematics Part - II CBCS Semester - IV Paper-IX Fractional Calculus (CC-1198D)

Theory: 60Hour Credits -05

Course Outcomes: After the completion of the course the student will be able to -

- CO1 Understand G-L and RL-fractional integral and evaluate fractional integrals of some common functions
- CO2 RL and Caputo-fractional derivatives and evaluate fractional derivatives of some common functions
- CO3 To Solve Linear Fractional Differential Equation using the Laplace and Mellin transform.

CO4 The study of fractional differential

Unit	Syllabus	Lectures/ Teaching Hours	Credi ts
Module 1	Brief review of Special Functions of the Fractional Calculus: Gamma Function, Mittag-Leffler Function, Wright Function, Fractional Derivative and Integrals: Grünwald-Letnikov (GL) Fractional Derivatives-Unification of integer order derivatives and integrals, GL Derivatives of arbitrary order, GL fractional derivative of , Composition of GL derivative with integer order derivatives, Composition of two GL derivatives of different orders. Riemann-Liouville (RL) fractional derivatives-Unification of integer order derivatives and integrals, Integrals of arbitrary order, RL derivatives of arbitrary order.		1
Module 2	Composition of RL derivative with integer order derivatives and fractional derivatives, Link of RL derivative to Grünwald-Letnikov approach, Caputo's fractional derivative, generalized functions approach, Left and right fractional derivatives. Properties of fractional derivatives: Linearity, The Leibnitz rule for fractional derivatives, Fractional derivative for composite function, Riemann-Liouville fractional differentiation of an integral depending on a parameter, Behaviour near the lower terminal, Behaviour far from the lower theory.	15	1.5
Module 3	Laplace transforms of fractional derivatives- Laplace transform of the RiemannLiouville fractional derivative, Caputo derivative and Grünwald-Letnikov fractional derivative. Fourier transforms of fractional integrals and derivatives. Mellin transforms of fractional derivatives-	15	1.5

	Mellin transforms of the Riemann-Liouville fractional		
	integrals and fractional derivative, Mellin transforms of		
	Caputo derivative.		
Module 4	Existence and uniqueness theorem: Linear fractional	15	1
	differential equations (FDE), Fractional differential		
	equation of a general form, Existence and uniqueness		
	theorem as a method of solution. Dependence of a		
	solution on initial conditions. Methods of solving FDE's:		
	The Laplace transform method. The Mellin transform		
	method, Power series method.		

- 1. Igor Podlubny, Fractional differential equations. San Diego: Academic Press; 1999.
- 2. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- 3. Kai Diethelm, The Analysis of Fractional Differential Equations, Springer, 2010.
 - $L.\ Debnath,\ D.\ Bhatta,\ Integral\ Transforms\ and\ Their\ Applications,\ CRC\ Press$

SCHEME OF MARKING (THEROY)

Sem.	CC	Mark s	Evaluation	Answer Books	Standard of passing
I	CC- 1180C TO CBC- 1187A	90	Semesterwise	As per Instruction	35% (36 marks)
II	CC- 1190D TO CBC- 1198D	90	Semesterwise	As per Instruction	35% (36 marks)

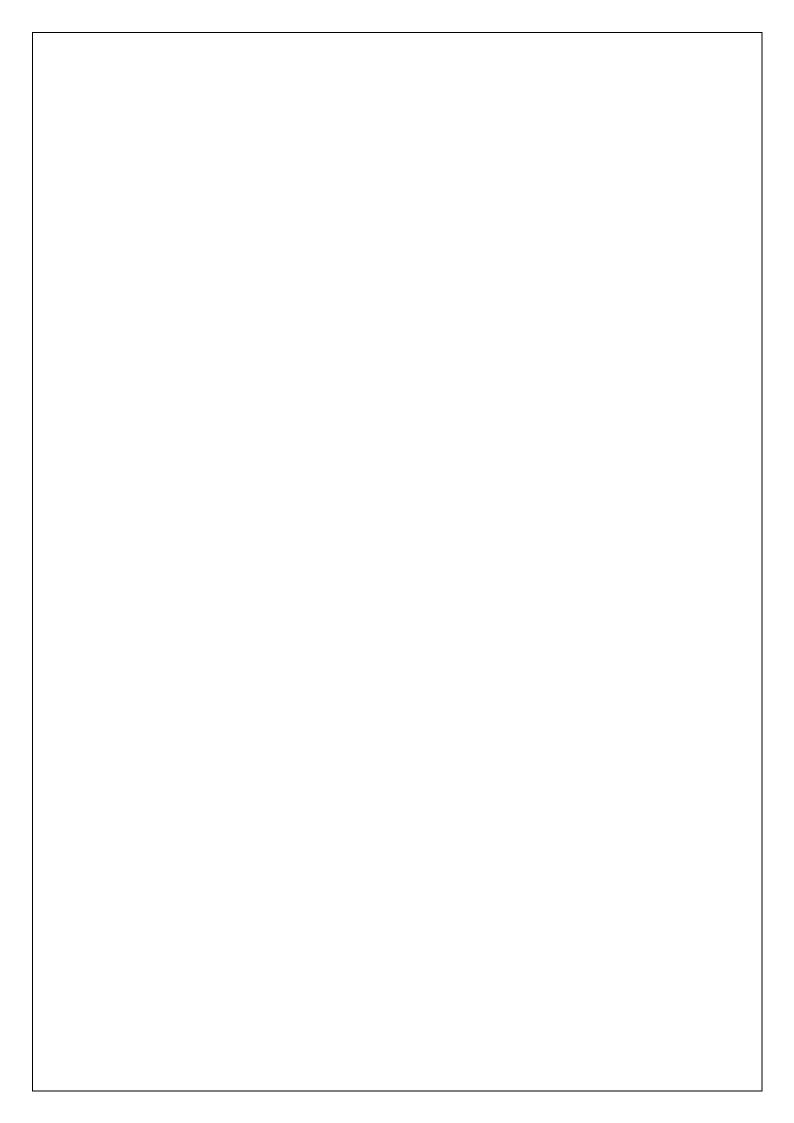
SCHEME OF MARKING (CIE) Continuous Internal Evaluation

Sem.	CC	Marks	Evaluation	Answer Books	Standard of passing
I	CC1180C TO CBC1187C	30	Concurrent	As per Instruction	35% (12 marks)
II	CC- 1190D TO CBC- 1198D	30	Concurrent	As per Instruction	35% (12 marks)

^{*}A separate passing is mandatory

Nature of Question Paper

Instructions: 1) Questions **No. 1** is **compulsory**.


- 2) Attempt any **four** questions from que. no. 2 to que. no. 7.
- 3) All questions carry equal marks.
- 4) Figures to right indicates full marks.
- 5) Use of log table/calculator is allowed.

Time: 3 hours **Total Marks: 90** Q. 1. A) Choose correct alternative. (2 Marks each) [08] i) B) A) C) D) ii) A) B) C) D) iii) A) D) B) C) iv) A) B) C) D) B) Fill in the blanks. (2 Marks each) [10] Q.2. A) [18] B) C) OR [18] A) B) Q.3. [18] A) В C) OR [18] A) B)

Q.4	A)		[18]
	B)		
	C)		
	,	OR	
	A)		[18]
	B)		L - J
	2)		
Q.5.	A)		[18]
	B)		
	C)		
	- /	OR	
	A)	-	[18]
	B)		[20]
	D)		
Q.6.	A)		[18]
	B)		
	C)		
		OR	
	A)		[18]
	B)		
Q.7.	A)		[18]
	B)		
	C)		
		OR	
	A)		[18]
	В)		
	<i>'</i>		• • • • • • • • • • • • • • • • • • • •

REMARK:

Note that the distribution of marks for A, B, C or A, B (Q.N.2 to Q.N.-7)may vary according to the nature of question.

