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Introduction

In 1834, German mathematician Peter Gustav Lejeune Dirichlet (1805-1859)
started a simple — but extremely powerful — mathematical principle which he
called the Schubfachprinzip (drawer principle). Today it is known either as the
Pigeonhole Principle, as Dirichlet Principle, or as The Cubby-hole Principle.

Pigeonhole principle is a fundamental but powerful tool in combinatorics.
Unlike many other strong theorems, the principle itself is exceptionally simple.
Unless you have looked into it thoroughly, it is hard to have a glimpse of its

elegance and useful applications in mathematics.




The Basic Pigeonhole Principle:

Proposition PHP1:

(The Pigeonhole Principle, simple version.)
If k+1 or more pigeons are distributed among k pigeonholes, then at

least one pigeonhole contains two or more pigeons.
Proof

The contrapositive of the statement is: If each pigeonhole contains at
most one pigeon, then there are at most k pigeons. This is easily seen to be true.

The same argument can be used to prove a variety of different
statements. We prove the general version of the Pigeonhole Principle and leave

the others as exercises.

Proposition PHP2:
(The Pigeonhole Principle.)

If n or more pigeons are distributed among k>0 pigeonholes, then at least one
. . n .
pigeonhole contains at least [;] pigeons.
Proof:
Suppose each pigeonhole contains at most E] — 1 pigeons. Then, the total

number of pigeons is at most

k([%] =1<k (-E) = n pigeons (because [ ] — ) .E [E])



Other principles related to the pigeonhole principle:

> If n objects are put into n boxes and no box is empty, then each box contains

exactly one object.
> If n objects are put into n boxes and no box gets more than one object, then

each box has an object.

Example:

1. 51 numbers are chosen from the integers between 1 and 100 inclusively.

Prove that 2 of the chosen integers are consecutive.

Solution.

— ..-_.__.._‘”‘h——’—"__'__—'—_—_"_‘__h——\“____\*wﬁ_._-_



Since the existence of consecutive integers is the main theme of the
problem, it is natural to form pigeonholes using consecutive integers. We

partition the 100 integers into

50 pairs of consecutive integers as pigeonholes: {1, 2}, {3, 4}, {5, 6}, ..., {99,
100}
Let the 51 chosen integers be pigeons.

- By Pigeonhole Principle, when we choose 51 integers, there is at least 1
pigeonhole (a pair of integers) containing E;—] = 2 pigeons (chosen integers).

Therefore, there are 2 consecutive integers among the 51 chosen integers.

2. 10 integers are chosen from 1 to 100 inclusively. Prove that we can find 2
disjoint non-empty subsets of the chosen integers such that the 2 subsets
give the same sum of elements.

Solution.

Note that we are asked to find 2 subsets giving the same sum of elements.
Therefore, we may let ‘the possible sum of elements’ be pigeonholes. Although
we do not know what the 10 chosen numbers are, we know the range of the
sums. Clearly, the sum must be an integer.

Moreover, the sum must be at least 1 (since all chosen integers are
positive) and at most 91 +92+.... +100 =955.Therefore, we may set 955
pigeonholes as 1, 2, 3, ..., 955 and the subsets of the chosen numbers as pigeons.

Obviously, there are 2'° —1 = 1023 pigeons (non-empty subsets).Therefore,

there is at least 1 pigeonhole with

1023] _ ., . : -
555 | = 2 pigeons i.e. 2 subsets giving the same sum of elements.

Note that any one of them cannot be a subset of another. Otherwise they

must not have the same sum of elements. If the 2 subsets are disjoint, we are

A T ———— “E——’——K



done. If they have common elements, we may remove the common elements
from the 2 subsets. It reduces the sums by the same amount (namely the sum of

common elements), so the 2 new subsets give the same sum again.

The pigeonhole principle can be phrased in terms of labels.

e If more than N objects are to be assigned labels from a set of N labels, then

there is sure to be two objects with the same label.

This simple principle allows us to make some mighty surprising

conclusions about the world.

EXAMPLE:

3. Twenty people in a room take part in handshakes. Each person shakes
hands at least once and no one shakes the same person’s hand more than

once. Prove that two people took part in the same number of handshakes.

ANSWER:

Label each person by the number of handshakes she took part in.
There are twenty people but only nineteen labels:1,2,3,...,18,19.By the
pigeonhole principle, at least two people have the same label.
4. Eight positive numbers are chosen at random.
Explain why two of them are sure to differ by a multiple of seven.
ANSWER:
Label each number by the remainder it leaves when divided by seven.

There are eight numbers and only seven labels: 0, 1, 2, 3, 4, 5, or 6. At least two

—a————
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numbers have the same label. The difference of these numbers is a multiple of
seven.

S. Let X3, X3, ..., x50 be 20 consecutive integers. Choose any 11 of them at

random. Then at least two chosen integers differ by 10.
Answer:

Label each of the chosen numbers by its remainder upon division by 10. As
there are 11 numbers and 10 labels, two must have the same label and hence
differ by a multiple of 10.

Since the numbers x,, x,, x, ... ... , X0 are consecutive, two cannot differ by

20 or more. Thus the two numbers that differ by a multiple of 10 can only differ
by exactly 10.




THE GENERALISED PIGEONHOLE PRINCIPLE

I n pigeons are sitting in k pigeonholes, where n > k, then there is at least

one pigeonhole with at least n/k pigeons.

Proof:

Assume there were not any pigeonhole with at least n/k pigeons.
Then every hole has < n/k pigeons, so the total number of pigeons is
< (wk)# holes) = (n/k)(k) =n.

But this says the number of pigeons is strictly less than n, and in fact there

are exactly n pigeons.

So our assumption that there were no pigeonhole with at least n/k pigeons
must have been incorrect, and this means the Generalized Pigeonhole Principle is

true.
For example:-

6. If you have 5 pigeons sitting in 2 pigeonholes, then one of the pigeonholes
must have at least 5/2 = 2:5 pigeons , but since (hopefully) the boxes can't have

half-pigeons, then one of them must in fact contain 3 pigeons.

7. If 55 objects are to be put in 6 boxes, at least one box will possess at least 10
objects. (If not, six boxes with 9 or less objects will constitute only a total of 54

objects). Notice that 55/6 =9.17

8. Fifty & one integers are chosen at random from the numbers 1 through 100.

Prove that at least two of the chosen integers will differ by 10.

. ——— TR
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ANSWER:

Label each of the chosen numbers by its remainder upon division by 10. As
e e l"l . - -
there are 51 numbers, some §3 = 5.1 of them, that is, at least 6 of them, must

have the same label. Thus six numbers of the chosen numbers are spaced from
each other by multiples of 10.
Since the six numbers are chosen from the range 1 to 100, it is not possible

for all six to be 20 or more counts from cach other. (Think about this.) Thus at

least two of the six numbers differ by exactly 10.

How to construct pigeonholes?

Pigeons and pigeonholes are sometimes abstract. Therefore, drawing out
some cases is the best way to find clues for the construction of the pigeonholes.
From the trials, you will see how the pigeonholes should be constructed.

Example

9. There are 5 points in a square of side length 2. Prove that there exist 2 of them
having a distance not more than 2.

Solution.

After reading the question, we should try to think of the reason for the
desired result.

Since the unit square is bounded, in order to maximize the minimal distance
between the points, we should put the points as ‘far’ as we can. The most
intuitive way to do so is putting them at corners. However, there are only 4

corners, so one point should be placed so that it is ‘quite’ far from the 4 corners.

|
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Clearly, the centre of the square is such a point. It is quite ‘obvious’ that the

minimal distance between the points is the greatest now. (See Figure 9.1)

{fig 9.1 ‘The 5

points at the

corners and

center. }

However, how can we claim the minimum distance cannot be greater than 2 in all
circumstances? Actually, the figure tells us the answer. If we divide the square
into 4 unit squares, then any two points in the same unit square are at most 2
apart. (See Figure 9.2) By Pigeonhole Principle, when 5 points are put into the
squares, two of them must be in the same unit square. These two points are what

we want to find.

{fig 9.2:The square is divided into 4

unit squares. There are always 2 points

in 1 unit square. }

> The aid of the figure of the ‘just satisfaction of the requirement’ is important.
It inspires us to think how we should divide the square. For example, you will
know that dividing the square into 4 big triangles (using the 4 sides as the

bases) is useless from Figure 9.1.



» 1f you check the Principle carefully, you will find that it is assumed implicitly
that each pigeon are put in one pigeonhole only. Therefore, strictly speaking,
some of the 4 unit squares should have lost a part of their common boundaries
with other unit squares so as to be consistent with this implicit requirement of

the theorem.

10. 27 points are aligned so that each row has 9 points and each column has 3
points. (A column is perpendicular to a row.) Each point is painted in red or blue.
Prove that there exists a monochromatic rectangle (i.e. 4 vertices are of the same
colour) with its sides parallel to the rows and columns.
Solution.

Try to draw the points to see how they ‘behave’. If you try to draw and paint
them randomly, you will probably find that some columns are exactly the same.
Actually, this is the way to the solution. Every point may have 2 colours.

Therefore, every column containing 3 points has
23 = 8 colouring schemes. By Pigeonhole Principle, there are at least E] =

2 columns painted exactly the same. In each of these 2 columns, by Pigeonhole
Principle again, we have at least 2 points in the column painted in the same
colour. Obviously, these 4 points having the same colour in these 2 columns form

| a rectangle with the desired properties

» Drawing the points to see how they behave is important. It helps us find the
way to construct pigeonholes.

> Actually, 21 points aligned in 7 rows and 3 columns are enough to find such a

rectangle.




Finding the bound

' i - nt.
In the sessions above, all problems only require a proof for the stateme
prove choosing 51 numbers from 1 to

For example, in Example 1, it tells us to
r, can this condition hold if 51 1s

100 must give 2 consecutive integers. Howeve

replaced by a smaller number? Since questions are sometimes open, we have to

(?
seek for the best lower bound some time. How can we find the best lower bound?

Pigeonhole Principle sometimes helps a lot.

To prove a number is the best lower bound, we have to check that any

smaller integers lead to a counter example. Let’s take Example 1 as an example:

Example:

11. Prove that 51 cannot be replaced by any smaller integer in Example 1

Solution:
From the solution in Example 1, we see that if any one pigeonhole

' contains 2 chosen integers, the condition is satisfied. Therefore, if the condition
fails, each pigeonhole must contain at most 1 chosen number. We can use this
clue to find a set of 50 numbers where each pigeonhole contains 1 chosen
number only. It is not difficult to find out

{1,3,5,7,...,99} and {2, 4, 6, ..., 100} are sets of 50 integers without

consecutive integers. Therefore, 51 is the best lower bound.

12. Prove that 6 cannot be replaced by 5 .
Solution.
We see that if any point is incident to 3 blue edges or 3 red edges, then

there is a monochromatic triangle. Therefore, no triangle occurs only if al] 5

ﬂ\
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points have no 3 blue edges and no 3 red edges incident to it. Since there are 4
edges incident to each point, we can conclude for the edges incident to each
point, exactly 2 of them are red and exactly 2 of them are blue. Having known
this information, we can draw a counterexample easily. (Figure 1) Hence, 6

cannot be replaced by 5.

{fig 1: A counter example.

(Solid lines are and dashed lines

are blue)}

» It proves that R(3,3)=6.

> Figure 1 is the only graph with 5 vertices in 2 colours having no
monochromatic triangles. (To be precise in graph theory, we say it is unique

up to homomorphism.) It consists of 2 monochromatic pentagons, one in red

and one in blue.

13. If 19 is replaced by 18, find a colouring scheme for the 72 points such that

no monochromatic rectangles exist.

Solution.

If a pigeonhole has more than 1 pigeon, then there is a
monochromatic rectangle. Therefore, the only way to make the condition fail is
to let each pigeonhole contain no more than one pigeon. Since there are 18
columns (pigeons) and 18 pigeonholes, it forces each pigeonhole to accept one
element. Moreover, if some of the columns have more than 1 choice of its

pigeonholes, then clearly it can lead to more than 1 element in a pigeonhole

———— ————
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Therefore, each column must have only exactly 1 pair of points in the same
| colour. Using this clue, we can find a colouring scheme for 18 columns to avoid
rectangles:

RRRBBB BBBRRR YYYBBB

RBBRRY BRRBBY YBBYYR

BRYRYR RBYBYB BYRYRY

YYRYRR YYBYBB RRYRYY

{A counter example}

Pigeonhole Principle: Strong Form

Theorem 1.
Let q41, 93, .-, qn 1 be positive integers. If
g1 +qz++qp—n+1l
objects are put into n boxes, then either the 1st box contains at least g; objects, or

the 2nd box contains at least g, objects,..., the nth box contains at least

qn objects.

Proof.

Suppose it is not true, that is, the ith box contains at most g; — 1 objects,
i:1.2......n. Then the total number of objects contained in the n boxes can be at
most

(g, — 1) + (g2 —D++@-1)—-q +q+-+q,—n,
which is one less than the number of objects distributed. This is a contradiction.

The simple form of the pigeonhole principle is obtained from the strong

form by taking q1 — g2 e s Gy, 5 \J




Then q+g2+--+q,—n+1-2n—-n+1-n+1.

In elementary mathematics the strong form of the pigeonhole principle is
most often applied in the special case when q; — q; — *** — g — 7. In this case
the principle becomes:

e If n(r-1)+ 1 objects are put into n boxes, then at least one of the boxes
contains r or more of the objects. Equivalently.

e If the average of n nonnegative integers a,, a,, ..., a, is greater than r-1, i.e.,

@y Q3 F #ra,

>r—1
n

then atleast one of the integers is greater than or equal to r.

example:

14. A basket of fruit is being arranged out of apples, bananas, and oranges. What
is the smallest number of pieces of fruit that should be put in the basket in order
to guarantee that either there are at least 8 apples or atleast 6 bananas or at least 9
oranges?

Answer: 8+6+9-3+1=21.

15. Given two disks, one smaller than the other. Each disk is divided into 200
congruent sectors. In the larger disk 100 sectors are chosen arbitrarily and
painted red; the other 100 sectors are painted blue. In the smaller disk each sector
is painted either red or blue with no stipulation on the number of red and blue
sectors. The smaller disk is placed on the larger disk so that the centers and

sectors coincide. Show that it is possible to align the two disks so that the number i




of sectors of the smaller disk whose color matches the corresponding sector of
the larger disk is at least 100.

Proof.

We fix the larger disk first, then place the smaller disk on the top of
the larger disk so that the centers and sectors coincide. There 200 ways to place
the smaller disk in such a manner. For each such alignment, some sectors of the
two disks may have the same color. Since each sector of the smaller disk will
match the same color sector of the larger disk 100 times among all the 200 ways
and there are 200 sectors in the smaller disk, the total number of matched color
sectors among the 200 ways is

100x200 = 20,000. Note that there are only 200 ways. Then there is at least one

way that the number of matched color sectors is Zooos

= 100 or more

16. Show that every sequence ay, @y, ..., @2, of n? + 1 real numbers contains

either an increasing subsequence of length n+ 1 or a decreasing subsequence of

|

!

t
length n+ 1. I
Proof. '
Suppose there is no increasing subsequence of length n+1. We suffices to |

show that there must be a decreasing subsequence of length n+ 1. i
Let I, be the length of the longest increasing subsequence which begins with }
ax,1 < k <n?+ 1. Since it is assumed that there is no increasing subsequence li
of length n+ 1, we have 1 < [ < n for all k. By the strong form of the ‘:

pigeonhole principle, n+ 1 of the n® + 1 integers ly, I, ..., [,2,, must be equal,

Say: lkl o Zkz — e lkﬂ+1 [}




If there is one k; (1 <i <n) such that ay, < ay,,, then any increasing
subsequence of length [, -~ beginning with a,,,,  will result a subsequence of
length [, , + 1 beginning with a;, by adding ay, in the front; so L, > l,,,,
which is contradictory to [, — lk;,,- Thus we must have

A, = Ak, = "+ 2 Ay, .,

which is a decreasing subsequence of length n+ 1.

Ramsey Theory

Theorem 1.

Let S be a finite set with n elements. Let P-(S) be the collection
of all r-subsets of S with r>1, i.e,

B.(S) - {X c5:1X| -7},
Then for any integers p, q > r there exists a smallest integer R(p, q; r)such that, if
n > R(p, q; r) and B-(S) is '
2-colored with two color classes C; and C,, then there is either a p-subset S; € S
such that P.(S;) € C;, oraq-subsetS, S S such that B tSz) GCs.
Proof.

We proceed by induction on p, q, and r. For r-] , We have R (D, g5 1)=

p+q-1. Note that every element of P, (S) is a singleton set and IP1(S)| — |S| . For

an n-set S with n>p+q-1, if |C;| = p , we take any p-subset

51 S Uxec, X , then obviously P(S;) € C; . If|Cy| < P,then |G| > g ; we
take any g-subset

S2 € Uxec, X and obviously have P, (S,) < C> . Thus R(p, q; 1)<p+g-1 . For n-

p+q-2, let C, be the set of p-1 singleton sets and ¢ 2 the set of the other g-1

singleton sets. Then it is impossible to have a p-subset§, < § such that




P,(S,) € C; orag-subset S, such that P4(S;) S C, . Thus
R(p, g; )zp*q-1.
Moreover, for any integer r>1 it can be easily verified that

R(r, g; 1)-q, R(p, r; 1)-p.

In fact, for p-r, let S be a g-set. For a 2-coloring { €1, C2 } of P.(S) ,ifC1 — @,
then P,.(S) — C and obviously P,.(S,) € C, forS, —S.1fCy # @, take an r-
subset A€ Cq ; obviously, P.(A) — {A} € C4 . Thus
R(k, q; k)<q.Let |S| <g-1.If C; — @, then
C, — P,(S) . Itis clear that there is neither an r-subset
A € S such that P,.(4) < C; nor a g-subset B € S such that P,.(B) € C, . Thus
R(r, g; r)>q. It is similar for the case R(p, r; r)-p.
Next we establish a recurrence relation about R(p, q; r) for r > 2 as follows:
R(p,q;7) <R(p1.q1,7—1)+1,p1 —R(p—1,q;7),
91— R(p.q—1;1)
Letn> R(pl,ql;r — 1) + 1 and |S| — n . Take an element x€ S and let
§1—S—{x}.Then S| —n —1and |S1]| = R(P1,q1;7 — 1). Let {C; D} be a
2-coloring of P,.(S) and let,
C;—-{A€C:x¢ALD;—{A€D:x¢ 4).

Obviously, {C1, D1} is a 2-coloring of P.(§;) . Let

Cx—{A€EP,.1(S1:AU{x} e ¢},

D, —{A€P,_4(51):AU {x} € D}.
Forany A € P,_4(S1) , it is obvious that either
AU {x} € Cor AU {x} € D ; then either A € C, or

A € D,. Thus {C,, D,} isa2-coloring of P,._;(S;) . Since IS1] > R(py,qr —

1). and by the induction hypothesis on k, we have (I) there exists 4 P1-subset

X & 51 such that P._1 (X) € Cx , or (II) there exists a g, -subset

e e
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) ¥ © 8, suchthat P._,(Y) € D,.

 Case (I): Since p; — R(p — 1,q; )and { C,,C, } isa2-coloring of P.(51) , by
 induction hypothesis on p (when r is fixed) there exists either a (p-1)-subset

' X1 S Xsuchthat P..(X;) € C; c Cora q —subset ¥4 € X such that P,.(Y,) ©
: D, c D . In the former case, consider the p-subset X — X, U {x} € S . For any
r-subset A € X', if x € A, obviously 4 c X, ,s0 4 € C ; if x € 4, obviously
A —{x}isan (r-1)-subset of X, s0 A — {x} € C, ,then 4 — (A — {x} U {x} € C..
This means that X' is an r-subset of S and P,.(X') € C . In the latter case, we

already have a g-subset ¥; < S such that P.(Y,) € D.

Case (I): Since 1 — R(p,q — 1;7) and { C;,C, } is a partition of P,-(S1) ,
then by induction hypothesis on q (whenr is fixed) there exists either a p-subset
X1 S Xsuchthat P.(X;) €C, cCora (g-1)-subset Y; € X such that P.(Y;) €
D; < D. In the former case, we already have a p-subset X; € S such that

Pr(X1) € C. In the latter case, we have a g-subset Y — Y, U {x} < S and
PAY)ED

Now we have obtained a recurrence relation:

R(p, q; 1) <RR(p-1, q; 1), R(p, q-1; r); r-1)+1.
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