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INTRODUCTION

A differential equation is any equation which contains derivatives, either
ordinary derivatives or partial derivatives.

There is 01,1e differential equation that everybody probably knows, that
is Newton's Second Law of Motion. If an object of mass m is moving with

acceleration a and being acted on with force Fthen Newton’s Second Law tells
us. : \

A differential equation is a mathematical equation that relates some
function with its derivatives. In applications, the functions usually
represent physical quantities, the derivatives represent their rates

i of change, and the equation defines a relationship between the two.
Because such relations are extremely common, differential
equations play a prominent role in many disciplines including
engineering, physics, economics, and biology.

In pure mathematics, differential equations are studied from several
different perspectives, mostly concerned with their solutions—thé
set of functions that satisfy the equation. Only the simplest
differential equations are solvable by explicit formulas; however,
some properties of solutions of a given differential equation may be
determined without finding their exact form.

If a self-contained formula for the solution is not available, the
solution may be numerically approximated using computers. The
theory of dynamical systems puts emphasis on qualitative analysis
of systems described by differential equations, while many
numerical methods have been developed to determine solutions with
a given degree of accuracy.

e e _ﬂ
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Types of Differential Equation:

e Ordinary differential equations:

An ordinary differential equation (ODE) is an equation
containing a function of one independent variable and its
derivatives. The term "ordinary" is used in contrast with
the term partial differential equation which may be with
respect to more than one independent variable.

e Partial differential equations:

A partial differential equation (PDE) is a differential
equation that contains unknown multivariable functions
| and their partial derivatives. (This is in contrast

1 to ordmary differential equations, which deal with
functions of a single variable and their derivatives.) PDEs
are used to formulate problems involving functions of
several variables, and are either solved in closed form, or
used to create a relevant computer model.

@ Scanned with OKEN Scanner



e Linear differential equations:

A differential equation is linear if the unknown function
and its derivatives have degree 1 (products of the
unknown function and its derivatives are not allowed)
and nonlinear otherwise. The characteristic property of
linear equations is that their solutions form an affine
subspace of an appropriate function space, which results
in much more developed theory of linear differential

equations.

e Non-linear differential equations:

Non-linear differential equations are formed by

the products of the unknown function and its
derivatives are allowed and its degree is > 1.There are
very few methods of solving nonlinear differential

equations exactly; those that are known typically depend
on the equation having particular symmetries
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| Di ' tions -

Differential equations are of great important in

engineering because many physical laws and relations

appear mathematically in the form of differential equations.

THE TECHNIQUE OF MATHEMATICAL MODELING :-

Mathematical modeling essentially consists of
translating real world problems into mathematical problems
solving the mathematical problems and interpreting these
solutions in the Janguage of real world i.e. Differential
equations arise in many engineering and other applications
as mathematical models of various physical and other
systems. :

For example if we drop a stone then its acceleration

2

y' = ?1'{2}1 is equal to the acceleration of gravity g(a

constant), Hence the model of this problem of “Free Fall” is
y’ = g (neglecting air resistance).

We have velocity y' = %}é =gt + v, where v, is the

initial velocity with which the motion started (e.g. v, = 0)

We get the distance traveled

g %‘ -+ vt + ¥,
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| ORTHOGONAL TRAJECTORIES :-

WORKING RULE TO FIND THE EQUATION OF ORTHOGONAL
§ TRAJECTORIES :-

Step 2:-

9 Wh ‘ is he ite o 0 at t beg.
We shall consider physical problems which lead to a

differential equation of first order and first degree and that

of second order which reduces to first order.

1. Trajectory : A curve which cuts every member of a

-given family of curves according to some definite law

is called a trajectory of the family

- 2. Orthogonal Trajectory : A curve which cuts every

member of given family of curves at right angles is
called as orthogonal trajectory of the faily.

Orthogonal Trajectories : Two families of curves are

SV

said to be orthogonal if every member of either family

cuts each member of the other family at right angles.

Thus if the given family consist of straight lines y =mx

(m = constant) represnting family of straight lines all

passing through the origin then the family of circles x2 + y2 =

a? (a is parameter) with centre at (0, 0) represents a fanuly of

orthogonal trajectories to the family y =mx.

Step 1:-
Given F(x,y,a) = 0 where a is parameter.
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- -
dx

dy

Or xdx + ydy =0
Which is the differential equation of the orthogonal
trajectories
Integrating (3),
_f xdx+ydy =b

.._.:. + X; = b
e

XZ ¥ y2 CZ

Which is the equation of the required orthogonal

trajectories of (1).

! ATMOSPHERIC PRESSURE:-

Example 1:
Find the atmospheric pressure p kg/m? at a height z

meters above the sea - level

Solution:-

Consider a vertical column of air of unit cross-section.
Let an element of this column be bo@ded by two horizontal
planes at height zand z + Oz above the sea lével. Letp and
8 p be the pressure at height z and z+ 6z respectively

Let p be the average density of the element.

The thin column 8z of air is in equilibrium under the

action of forces.

(1) p kg upwards
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(2) (P + 8p) kg downwards
(3) The weight pg 6z kg downwards

“P=p+dp+pgbz

:>6P+pg62=00r%£=—pg
Z

Taking the limit as §z —0

we have
op _
&z i PE (1)

Which is the differential equation giving atmospheric

pressure at any height z

Now, we discuss equation (1) under two assumptions

(1) When the temperature is constant.

(2) When the temperature varies.

Case 1:- When the temperature is constant.

By Boyle’s law

p=kp or p=p/k

Substituting this value of p in (1) we have,

.6_E=-E‘alor§2=——g—62
o5z k p k

Integrating,

J‘éP_: a3 J.6z+corlogp=- & z+c—(2)
p k %
At thesealevel, z=0 p = po(say)

Then c = log po
. From (2)/ :
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Applications Of Differential Equations:

We present examples where differential equations are widely
applied to model natural phenomena, engineering systems and
many other situations.

The study of differential equations is a wide field

in pure and applied mathematics, physics, and engineering. All of
these disciplines are concerned with the properties of differential
equations of various types. Pure mathematics focuses on the
existence and uniqueness of solutions, while applied mathematics
emphasizes the rigorous justification of the methods for
approximating solutions. Differential equations play an important
role in modelling virtually every physical, technical, or biological
process, from celestial motion, to bridge design, to interactions
between neurons. Differential equationé such as those used to
solve real-life problems may not necessarily be directly solvable,
i.e. do not have closed form solutions. Instead, solutions can be
approximated using numerical methods.

Application 1 : Exponential Growth — Population:

Let P(t) be a quantity that increases with time t and the rate of
increase is proportional to the same quantity P as follows
dp/dt=kP = |

where d p / d tis the first derivative of P, k> 0 and t is the time.
The solution to the above first order differential equation is given
by

P(t) =A e"
where A is a constant not equal to 0.

t
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If P=P  then Py = A e’which gives A = Py
The final form of the solution is given by i
P(t) = Py e*
Assuming Py is positive and since k is positive, P(t) is an increasing
exponential growth model.

e Application 2: Newton's Law of Cooling

It is a model that describes, mathematically, the change in
temperature of an object in a given environment. The law states
that the rate of change (in time) of the temperature is

1 proportional to the difference between the temperature T of the
L object and the temperature Te of the environment surrounding
| the object.
: : dT/dt=-k(T-Te)
( Letx=T-Tesothatdx/dt=dT/dt

Using the above change of variable, the above differential
equation becomes

dx/dt=-kx

The solution to the above differential equation is given by
x=Ae !
substitute x by T - Te

T-Te=Ae ©

Assume that at t = 0 the temperature T = To
To-Te=Ae®

which gives A=To—Te

The final expression for T(t) i given by

T(t)=Te + (To-Te)e '

This last expression shows how the temperature T of the object
changes with time.
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