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The Mathematics of Artificial Intelligence

Introduction

Artificial intellj
autonomous drivi
dynamics.
progressin
change th

gence is currently leading to one breakthrough after the other, both in public with, for instance,
Ng and speech recognition, and in the sciences in areas such as medical diagnostics or molecular
In addition, research on artificial intelligence and, In particular, on its theoretical foundations, is
8 3t an unprecedented rate. One can envision that according methodologies will in the future drastically
€ way we live in humerous respects.

1.1The Rise of Artificial Intelligence

to deegfua: int_e“iggnce is however not a new phenomenon. In fact, already in 1943, McCulIo.ch and Pitts stflftf:d
ne o] E? gorithmic approaches to learning by mimicking the functionality of the human brain, through artuf.ncnal

urons which are connected and arranged in several layers to form artificial neural networks. Already at that time,
they had a vision for the implementation of artificial intelligence. However, the community did not fully recognize
the potential of neural networks. Therefore, this first wave of artificial intelligence was not successful and vanished.
Around 1980, machine learning became popular again, and several highlights can be reported from that period.

T'he real breakthrough and with it a new wave of artificial intelligence came around 2010 with the extensive
application of deep neural networks. Today, this model might be considered the “workhorse” of artificial intelli-
gence, and in this article we will focus predominantly on this approach. The structure of deep neural networks is
precisely the structure McCulloch and Pitts introduced, namely numerous consecutive layers of artificial neurons.
Today two main obstacles from previous years have also been eliminated; due to the drastic improvement of
computing power the training of neural networks with hundreds of layers in the sense of deep neural networks is
feasible, and we are living in the age of data, hence vast amounts of training data are easily available.

1.2 Impact on Mathematics

The rise of artificial intelligence also had a significant impact on various fields of mathematics. Maybe the
firstarea which embraced these novel methods was the area of inverse problems, in particular, imaging science
where such approaches have been used to solve highly ill-posed problems such as denoising, inpainting,
supernresolution, or (limited-angle) computed tomography, to name a few. One might note that due to the lack of a
precise mathematical model of what an image is, this area is particularly suitable for learning methods. Thus,
after afew years, a change of paradigm could be observed, and novel solvers are typically at least to some extent
based on methods from artificial intelligence. We will discuss further details in Subsection.The area of partial
differential equations was much slower to embrace these new techniques, the reason beingthat it was not per se
evident what the advantage of methods from artificial intelligence for this field wouldbe. Indeed, there seems
to be no need to utilize learning-type methods, since a partial differential equation is a rigorous mathematical
model. But, lately, the observation that deep neural networks are able to beat the curse of dimensionality in high
dimensional settings led to a change of paradigm in this area as well. Research at the intersection of numerical
analysis of partial differential equations and artificial intelligence therefore accelerated since about 2017. We will
delve further into this topic in Subsection 4.2.

1.3 Problems of Artificial Intelligence

However, as promising as all these developments seem to be, a word of caution is required. Besides the fact that
thepractical limitations of methods such as deep neural networks have not been explored at all and at present neural
networks are still considered a “jack of all trades”, it is even more worrisome that a comprehensive thearetical
foundation is completely lacking. This was very prominently stated during the major conference in artificial
intelligence and machine learning, which is NIPS (today called NeurlPS) in 2017, when Ali Rahimi from Google
received the Test of Time Award and during his plenary talk stated that “Machine learning has become a form of

8




Elr‘g:n;\’;;:tl;is raised a h‘ealcd discussion to which extent a theoretical foundation d?es exist and is n'ecessary at a'll.
intelligence i;e.mati¢a' viewpoint, it is crystal clear that a fundamental mathen'\atscal unde.rstandm'g of artificial
at best, inevitably necessary, and one has to admit that its development is currently in a preliminary state
con‘sr::;i:fd;:f n;‘athemati(':al foundations, for instance, in the case of deep neural networks, res.ul‘ts ina tim'e-
and miSSir?g erarc for a suitable network architecture, a highly delicate trial-and-error-based (tramm'g) prch..s,
e approachror bounds for the performance of the trained neural network. One need's to stress. that, in addition,
adrastic chan es also sometimes unexpectedly fail dramatically when a small pertt_;r.batuon of the mput'data caus;es
are a well-kn ge of the output leading to radically different—and often wrong—decisions. Such adyersanal examp esf
traffic signs Oown problem, which becomes severe in sensitive applications such as when a minor alt'eratlons o
decisio o e..g, the placement of stickers, causes autonomous vehicles to suddenly reacha'n entirely wrong
n. Itis evident that such robustness problems can only be tackled by a profound mathematical approach.

1.4 A Need for Mathematics

) These considerations show that there is a tremendous need for mathematics in the area of artificial
lnte.lllgence. And, in fact, one can currently witness that numerous mathematicians move to this field, bringing in
their own expertise. Indeed, as we will discuss in Subsection 2.4, basically all areas of mathematics are required to
tackle the various difficult, but exciting challenges in the area of artificial intelligence.

One can identify two different research directions at the intersection of mathematics and artificial intelligence:

Mathematical Foundations for Artificial Intelligence. This direction aims for deriving a deep mathematical
understanding. Based on this it strives to overcome current obstacles such as the lack of robustness or places
the entire training process on solid theoretical feet.

Artificial Intelligence for Mathematical Problems. This direction focuses on mathematical problem settings
such as inverse problems and partial differential equations with the goal to employ methodologies from
artificial intelligence to develop superior solvers.

1.5 Outline

Both research directions will be discussed in this survey paper, showcasing some novel results and pointing
outkey future challenges for mathematics. We start with an introduction into the mathematical setting, stating the
main definitions and notations (see Section 2). Next, in Section 3, we delve into the first main direction, namely
mathematical foundations for artificial intelligence, and discuss the research threads of expressivity,
optimization,generalization, and explainability. Section 4 is then devoted to the second main direction, which is
artificial intelligence for mathematical problems, and we highlight some exemplary results. Finally, Section 5 states
the seven main mathematical problems and concludes this article.




2 7T .

he Mathematical Setting of Artificial Intelligence
We now T . o
mathEmagz;'z:;e::?re details on the precise definition of a deep neural network, which is after all a purely

the curr We will also touch upon the typical application setting and training process, as well as on
ent key mathematical directions.

2.1 S
Definition of Deep Neural Networks
The corn ildi
functior:’“bullt:mg blocks are, as said, artificial neurons. For their definition, let us recall the structure a'nd
signals arettyr: a neuron in the human brain. The basic elements of such a neuron are dendrites, through which
nsmi ; : . .
dendrites. In th itted to its soma while being scaled/amplified due to the structural properties of the respective

10 fire to oth € soma of the neuron, those incoming signals are accumulated, and a decision is reached whether
O other neurons or not, and also with which strength.
This forms

the basis for a mathematical definition of an artificial neuron.
Definiti ifici '
‘ dmmon 2.1. An artificial neuron with weights wy, ..., wa € R, bias b € R, and activation function p : R — R
is defined as the function f: R" L R given by

!

flxy, ., xn)=p 3 xwi-b =p((x,w)-b)
i=1

where w = (wy, ..., wn) and x = (x1, ..., Xn).

By now, there exists a zoo of activation functions with the most well-known ones being as follows:
(1) Heaviside function p(x) = ** X~ O
0 x<o0.
(2) Sigmoid function p(x) = 2.

= -

(3) Rectifiable Linear Unit (ReLU) p(x) = max{0, x}.

We remark that of these examples, the by far most extensively used activation function is the ReLU due to
its simple piecewise linear structure, which is advantageous in the training process and still allows superior
performance.

Similar to the structure of a human brain, these artificial neurons are now being concatenated and arranged in
layers, leading to an (artificial feed-forward) neural network. Due to the particular structure of artificial neurons,
such a neural network consists of compositions of affine linear maps and activation functions. Traditionally, a deep
neural network is then defined as the resulting function. From a mathematical standpoint, this bears the difficulty
that different arrangements lead to the same function. Therefore, sometimes a distinction is made between the
architecture of a neural network and the corresponding realization function (see, e.g., [6]). For this article, we
will however avoid such technical delicacies and present the most standard definition.

Definition 2.2. Let d € N be the dimension of the input layer, L the number of layers, No :=d, Na, =1, ..., L, the

dimensions of the hidden and last layer, p : R — R a (non-linear) activation function, and, for I=1,..., L, let Ta
be the affine-linear functions

Ta: RV, RM, Tax = WWix 4+ plA),




with WA ¢ R,

. RY being the weight matrices and b¥ € RM the bias vectors of the fth fayer. Then
®:RY. RM, given by

- ®(x) = Tp(Tepl. .. p(Ti(x)))), e |
is called (deep) neural network of depth L. |

Let us already mention at this point that the weights and biases are the free parameters which will be learned

idnU;Iing th; training process. An illustration of the multilayered structure of a deep neural network can be found i
gure 1.

Figure 1: Deep neural network @ : R* — R with depth 5.

2.2 Application of a Deep Neural Network

Aiming to identify the main mathematical research threads, we first have to understand how a deep neural network f
is used for a given application setting. |

Step 1 (Train-test split of the dataset): We assume that we are given samples (x', y/J}{" of inputs and
outputs. The task of the deep neural network is then to identify the relation between those. For instance,
in a classification problem, each output y is considered to be the label of the respective class to which the
input x!? belongs. One can also take the viewpoint that (x{7, y(?)™  arises as samples from a function such as
g:M — {1,2,..., K}, where M might be a lower-dimensional manifold of RY in the sense of y! = a(x) for

alli=1,...,m )
The set (7, ;?'))m is then split into a training data set (x'9, y"’)",’_1 and a test data set (x\2, yU1)™
=1 = '

i=mel

The training data set is—as the name indicates—used for training, whereas the test data set will later on solely
be exploited for testing the performance of the trained network. We emphasize that the neural network is not

exposed to the test data set during the entire training process.

Step 2 (Choice of architecture): For preparation of the learning algorithm, the architecture of the neural
network needs to be decided upon, which means the number of layers L, the number of neurons in each layer
(Ns)%,_, and the activation function p have to be selected. It is known that a fully connected neural network is
often difficult to train, hence, in addition, one typically preselects certain entries of the weight matrices (W)* |
to already be set to zero at this point.

For later purposes, we define the selected class of deep neural networks by NN ¢ with & encoding this chosen
architecture.

Step 3 (Training): The next step is the actual training process, which consists of learning the affine-linear
functions (Ta),_, = (W “) - +pW)L . This is accomplished by minimizing the empirical risk

. 1 = () (i 2
R(Dww,bny, ) = = (Dwopo)n(x )=y ). (2.1)
=1
A more general form of the optimization problem is
p -
min L(@wape) (), y) +A QW W, b)),

(WHLbW) £ jq




where Lis a loss function to determine
and the (known) values yi
weight matrices and bias vect
One common algorithmic a
not feasible. This problem
they constitute a reasonab

Solving the optimizatj

a measure of closeness between the network evaluated in the training sam- ples
and whereP is a penalty/regularization term to impose additional constraints on the
ors.

Pproach is gradient descent. Since, however, m is typically very large, this is computa- tionally
is circumvented by randomly selecting only a few gradients in each iteration, assuming that
le average, which is coined stochastic gradient descent.

on problem then yields a network Owanpn < R? - R, where

Dwa,piny(x) = Tip(Te-10(. . . p(T1(x)))).
Step 4 (Testing): Finally,

. the performance (often also called generalization ability) of the trained neural
network is tested using the te

stdata set (x!, y(0)m,_ . by analyzing whether

Dwa,omy (X)) ~ y",  foralli=m+1,...,m.

2.3 Relation to a Statistical Learning Problem

F;im tfl\_e procedu_rg above, we can already identify the selection of architecture, the optimization problem, and the
generalization ability as the key research directions for mathematical foundations of deep neural networks.
Considering the entire learning process of a deep neural network as a statistical learning problem reveals those
three research directions as indeed the natural ones for analyzing the overall error.

For this, let us assume that there exists a function g : R? & R such that the training data (xX7, y)7_, is
of the form (x, g(xM))m, and x € [q, 1) for all i = 1,...,m. A typical continuum viewpoint to measure

success of the training is to consider the risk of a function f :R? = R given by
J
R(f) = (f(x) — g(x))* dx,

(019

2.4 Main Research Threads

We can identify two conceptually different research threads, the first one being focused on developing mathematical
foundations of artificial intelligence and the second one aiming to use methodologies from artificial intelligence to solve
mathematical problems. It is intriguing to see how both have already led to some extent to a paradigm shift in some
mathematical research areas, most prominently the area of numerical analysis.

2.4.1 Mathematical Foundations for Artificial Intelligence

Following up on the discussion in Subsection 2.3, we can identify three research directions which are related to the three
types of errors which one needs to control in order to estimate the overall error of the entire training process.

Expressivity. This direction aims to derive a general understanding whether and to which extent aspects of a
neural network architecture affect the best case performance of deep neural networks. More precisely




y h es s the approximation
the goal is to analyze the approximation errot infeeny o R(®) from (2.4), which estimate :(I: Orm: bl
C
accuracy when approximating g by the hypothesis classh N of deep neural networks

: ; analysis and ap-
architecture. Typical methods for approaching this problem are from applied harmonic analysis
proximation theory.

Learning/Optimization. The main goal of this direction is the analysis of the training f"{lo"thm S:‘;’c:u:’;
Stochastic gradient descent, in particular, asking why it usually converges to suitable local minima e'v;:‘n

the problem itself is highly non-convex. This requires the analysis of the optimization error, whic )
e lQ(mo)’"‘f‘l“:NN 1§ (@) (cf. (2.4)) and which measures the accuracy with which the learnt neural netwc;r
©° minimizes the empirical risk (2.1), (2.2). Key methodologies for attacking such problems come from the
areas of algebraic/differential geometry, optimal control, and optimization.

Generalization. This direction aims to derive an understanding of the out-of-sample error, namely,

SUPoeNN, TRI®)R  (O) from (2.4), which measures the distance of the empirical risk (2.1), (2.2) and the

actual risk (2.3)|. Predominantly, learning theory, probability theory, and statistics provide the required
methods for this research thread.

A very exciting and highly relevant new research direction has recently emerged, coined explainability. At
present, it is from the standpoint of mathematical foundations still a wide open field.

Explainability. This direction considers deep neural networks, which are already trained, but no knowledge
about the training is available; a situation one encounters numerous times in practice. The goal is then to
derive a deep understanding of how a given trained deep neural network reaches decisions in the sense of
which features of the input data are crucial for a decision. The range of required approaches is quite broad,
including areas such as information theory or uncertainty quantification.

2.4.2 Artificial Intelligence for Mathematical Problems

Methods of artificial intelligence have also turned out to be extremely effective for mathematical problem settings.
In fact, the area of inverse problems, in particular, in imaging sciences, has already undergone a profound paradigm
shift. And the area of numerical analysis of partial differential equations seems to soon follow the same path, at
least in the very high dimensional regime.

Let us briefly characterize those two research threads similar to the previous subsection on mathematical
foundations of artificial intelligence.

Inverse Problems. Research in this direction aims to improve classical model-based approaches to solve inverse
problems by exploiting methods of artificial intelligence. In order to not neglect domain knowledge such as
the physics of the problem, current approaches aim to take the best out of both worlds in the sense of
optimally combining model- and data-driven approaches. This rese
techniques, foremost from areas such as imaging science, Inverse probl
a few.

arch direction requires a variety of
ems, and microlocal analysis, to name

Partial Differential Equations. Similar to the area of inverse problems, here the go
solvers of partial differential equations by using ideas from artificial intelli
dimensional problems in the sense of aiming to beat the curse of dime
requires methods from areas such as numerical mathematics and parti

al is to improve classical
gence. A particular focus is on high
nsionality. This direction obviously
al differential equations.
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Aathematical Foundations for Artificial Intelligence
This section shall Lerve
o \“““\“.\‘ |I\‘Q‘"(Rp
problems

2.1 l?xprosslvltv

as an introduction into the main research threads aiming to develop a mathematical foundation
nee. We will introduce the problem settings, showcase some exemplary results, and discuss open

We ity -
:\:‘ l“hl\\\‘\\\l:i\ ‘::‘ ;“:‘;;t:': ‘?:‘~.\“"Ml area at present In terms of mathematical results. The grfr.lr!rnl rl""f"”“"’O;’:p
spproximation m\“";‘- " \.; |: a function class/space € and a class of deep neural networks NN s, how dor:n. f—
such ®? Making this “‘::‘(\:\ “‘ '; approximating elements of ¢ by networks M € NN o relate to the complexn:’/ ?n
the sequel, we will Chm\w(\l‘ ““‘ requires the introduction of a complexity measure for deep nel‘:ml net\tmr 5.
e canonical one, which is the complexity in terms of memory requirements. Notice

though that ce %G N S
ber of ! certainly various other complexity measures exist, Further, recall that thile- | o-"norm” counts the
number of non-zero components.

D:-tinmon 3.1, Retaining the same notation for deep neural networks as in Definition 2.2, the complexity Glpyers
deep neural network @ is defined by

b
() = W Wl + b Wio
A=1

The most well-known—and maybe even the first—result on expressivity is the universal approximation theorem [2,

13]. It states that each continuous function on a compact domain can be approximated up to an arbitrary accuracy by 2
shallow neural network.

Theorem 3.2. Let d € N, K © RYcompact, f : K - R continuous, p : R - R continuous and not a polynomial.
Then, for each € >0, there exist N € N and ax, bx € R, wk € RY 1 < k < N, such that

=
If - ap((wy, *) = bi)l- < €
k=1

While this is certainly an interesting result, it is not satisfactory in several regards: It does not give bounds on
the complexity of the approximating neural network and also does not explain why depth is so important. A
particularly intriguing example for a result, which considers complexity and also targets a more sophisticated function
space, was derived in [31].

Theorem 3.3. For all f € C([0, 1])9) and p(x) = max {0, x}, i.e., the ReLU, there exist neural networks (®a)sex
with the number of layers of ®n being approximately of the order of log(n) such that

If - ®nflew 4 C(@n )"40  asn e

This result provides a beautiful connection between approximation accuracy and complexity of the approx- imating
neural network, and also to some extent takes the depth of the network into account. However, to derive a result on
optimal approximations, we first require a lower bound. The so-called VC-dimension (Vapnik- Chervonenkis-dimension)
(see also (3.2)) was for a long time the main method for achieving such lower bounds. We will recall here a newer result
from [7] in terms of the optimal exponent y*(C) from information theory to
measure the complexity of C c L3(RY). Notice that we will only state the essence of this result without all

technicalities.




3.2 Optimization

This ar i

. com;a aims to analyze optimization
| " s ‘on approach is gradiemt desce
! € weight matrices and biases

; backpropagation [2_2), Which is in

algorithme, which solve the (tearning) problem in (2.1), ar, mare generally, (22)

N sinee the gradient of the loss function (or optimbzed tunctional) with tespect ty

the parameters of the network, can be computed exactly. thiv (s done via

| the number of training samplec | a \‘«‘\:(‘\in sense \n«fu‘lv an efficient application of the chalny rale. However, shivee

on each sample. Tt\crof‘o}:e i: N .'ls typically in the millions, it is computationally infeastble to compute the gradiont

! leading to the a'smithﬁ\ of 'q(:;;,‘:‘:ii}:;"‘“;‘_‘“ “";'\’ one ‘l‘l‘ \‘v\‘m.\l {a bateh) randomly selectod gradionts are computed,
In rex . N SUC gradient descent |28).

convex settings, guarantees for convergence of Stochastic pradient descent do exist, However, in the neural

network setting, th imizati
etwork ser g the optimization problem is non-convex, which makes it—even when using a non random version of
g escent—very hard to analy |

Sradient descent—vy ze. Including randomness adds another level of diffic ulty as s depicted in Figure 2,
gorithms reach different (local) minima.,

le,

| N
RS | =

| 0 ) \“‘;‘1
%

¢y

Gratent deuwt St gt demet
| Figure 2: Gradient descent versus stochastic gradient descent (6]

This area is by far less explored than ex

pressivity. Most current results focus on shallow neural networks, and for a
survey, we refer to [6].

3.3 Generalization

This research direction is perha

S Ps the least explored and maybe also the most difficult one, sometimes called the "holy
grail” of understanding deep n

eural networks. It targets the out-of-sample error

sup  |R(@) - R(0)] (3.1)
DENN

as described in Subsection 2.4.1.

One of the mysteries of deep neural networks is the observation that highly overparameterized deep neural networks
in the sense of high complexity of the network do not overfit with overfitting referring to the problem of fitting the

training data too tightly and consequently endangering correct classification of new data. An illustration of the
phenomenon of overfitting can be found in Figure 3.

Und tting Overfitting

Figure 3: Phenomenon of overfitting for the task of classification with two classes
Let us now analyze the generalization error in (3.1) in a bit more depth. For a large number m of training samples the law of
large numbers tells us that with high probability "R(®) ~ R(®) for each neural network ® € NN ». Bounding the complexity
fthe hypothesis class NN o by the VC-dimension, the generalization error can be bounded with probability 1 - & by

e
VCdim(NN o) + log(1/6)
m 11

(3.2)
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For classes of hj
ghly over-para
amount of training data t:‘k(:cn:(t”zm] neural networks, i.e., where VCdimINo) is very large, we need an enormous
experiments show the Dhenm‘m‘\nom generalization error under control. It is thus more than surprising that numerical
*non of a so-called double descent curve [5]. More precisely, the test error was found to

dCC ease dflel 8] 1551 (&4 r an increase consistent wit
I « ng ll\ 2 in i
I ). te polnlion DOInl, fO”OWOd by « i r i i N li ti I I AL (

Interpolation Point / Test Error

Training Error

Complexity of the deep neural network

Figure 4: Double descent curve

3.4 Explainability

sions of
ut data.
mage.
n of

Ilg?nzr:i::rz)l(?::tl:vzb:lty-rzlms to "open‘ the blaf:k box” of deep neural networks in the sense as to explain d.eci
Most a h rks. These exFJlan.atlons typically consist of providing relevance scores for features of theinp i

pproaches focus on the task of image classification and provide relevance scores for each pixel of the inputi
o"? CE_’" rt?ughly categorize the different types of approaches into gradient-based methods [28], propagatio
activations in neurons [4], surrogate models [24], and game-theoretic approaches [19].

We would now like to describe in more detail an approach which is based on information theory and also allows an
extension to different modalities such as audio data as well as analyzing the relevance of higher-level features; for a
survey paper, we refer to [15]. This rate-distortion explanation (RDE) framework was introduced in 2019 and later
extended by applying RDE to non-canonical input representations.

the decision @(x). This viewpoint reveals the relation to rate-distortion theory, which normally focusses on lossy

compression of data.
Since it is computationally infeasible to compute such a minimizer (see [30]), a relaxed optimization problem

providing continuous masks s € [0, 1)¢ is used in practice:
min E d(®((x), Ox©s+(1-5)© v)) + Allslls,

se(01]d v~V

e A > O determines the sparsity level of the mask. The minimizer now assigns each component x; of the input—in
|—a relevance score si€ [0, 1]. This is typically referred to as Pixel RDE.

k allow the incorporation of different distributionsVbetter adapted to data
distributions. Another recent improvement was the assignment of relevance scores to higher-level features such as
arising from a wavelet decomposition, which ultimately led to the approach CartoonX. An example of Pixel RDE
versus CartoonX, which also shows the ability of the higher-level explanations of CartoonX to give insights into what the

neural network saw when misclassifying an image, is depicted in Figure 5.

wher
case of images each pixe
Extensions of the RDE-framewor




Diaper

CartoonX Pixel RDE

Screw CartoonX Pixel RDE

Figure 5: Pixel RDE versus CartoonX for analyzing misclassifications of a deep neural network
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4 Artificial Intelligence for Mathematical Problems

We now turn to the research direction of
problems being inverse problems ang p
showcase some exemplary results, and

artificial intelligence for mathematical problems, with the two most prominent
artlal‘dlffercntlnl equations, As before, we will introduce the problem settings,
also discuss open problems.

4.1 Inverse Problems

Methods of artificial intelligence, in p

articular, dee inverse
problems, as already indicated befor » deep neural networks have a tremendous impact on the area of in

. One current major trend is to optimally combine classical solvers

with deep learning in the sense of taking the best out of the model- and data-world.

To introduce such results
» We start by recalling som ' et
X 3 ; e basic c . For this, assume tha
we are given an (ill-posed) inverse problem ’ »sbout solversoffnverse problems. 70 o

Kf =g, (4'1)
reK: LY i
where X Y is an operator and X and Y are, for instance, Hilbert spaces. Drawing from the area of

imagt'ngl SC"eml?e. examples include denoising, deblurring, or inpainting (recovery of missing parts of an image).
Most classical solvers are of the form (which includes Tikhonov regularization)
h i
= a i - qli .
8 i rgmin Ikt~ _alf  +a P(fy) ,

Data fidelity term Penalty/Regularization term

W!\ETG P X - R and f' € X, a >0 is an approximate solution of the inverse problem (4.1). One very popular and
widely applicable special case is sparse regularization, where P is chosen by

P(f) := I({; ¢il)ies |1 and

(gi)ie is a suitably selected orthonormal basis or a frame for X.
We now turn to deep learning approaches to solve inverse problems, which might be categorized into three

classes:

Supervised approaches. An ad-hoc approach in this regime is given in [14], which first applies a classical solver
followed by a neural network to remove reconstruction artifacts. More sophisticated approaches typically replace
parts of the classical solver by a custom-build neural network [26] or a network specifically trained for this task [1].

Semi-supervised approaches. These approaches encode the regularization as a neural network with an example
being adversarial regularizers [20].

Unsupervised approaches. A representative of this type of approaches is the technique of deep image prior [29].
This method interestingly shows that the structure of a generator network is sufficient to capture necessary
statistics of the data prior to any type of learning.

Aiming to illustrate the superiority of approaches from artificial intelligence for inverse problems, we will now focus
on the inverse problem of computed tomography (CT) from medical imaging. The forward operator K in this setting

is the Radon transform, defined by .

Rf(ep, s) = f(x)dS(x),
L(¢p,s)

X R 2:x1 cos(®) + X2 sin(p)=s , @ [€n-/2,n/2), ands Re. Often, only parts of the so- called

where L(¢p, s) =
(. s) sical constraints as in, for instance, electron tomography. The resulting,

sinogram fRan be acquired due to phy .
more difficult problem is termed limited-angle CT. One should notice that this problem is even harder than the

problem of low-dose CT, where not an entire block of measurements is missing, but the angular component is “only”

undersampled.
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Figure 6: .
N 6: CT Reconstruction from Radon measurements with a missing angle of 40

hybrid type and takes the best out of both worlds in the sense of combining model- and artificial intelligence- based

approaches.

Finafllv'; the deep learning-based wavefront set extraction itself Is yet another evidence of the improv
state-of-the-art now possible by artificial intelligence. Figure 7 shows a classical result from [23], whereas [2] uses
shearlet transform as a coarse edge detector, which is subsequently combined with a deep neural network.

ements on the
the
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Figure 7: Wavefront set detection by a model-based and a hybrid approach.

4.2 Partial Differential Equations

The second main range of mathematical problem settings, where methods from artificial intelligence are very
successfully applied to, are partial differential equations. Although the benefit of such approaches was not initially clear,
both theoretical and numerical results show their superiority in high-dimensional regimes.

The most common approach aims to approximate the solution of a partial differential equation by a deep neural
network, which is trained according to this task by incorporating the partial differential equation into the loss function.
More precisely, given a partial differential equationL(u) = f, we train a neural network @ such that

L(®) ~ f.
Since 2017, research in this general direction has significantly accelerated. Some of the highlights are the Deep Ritz
Method [10] and Physics Informed Neural Networks [22], or a very general approach for high-dimensional parabolic

partial differential equations [12].
One should note that most theoretical results in this regime are of an expressivity type and also study the

phenomenon whether and to which extent deep neural networks are able to beat the curse of dimensionality. In the
sequel, we briefly discuss one such result as an example. In addition, notice that there already exist contributions—

though very few—which analyze learning and generalization aspects.



Let (Luy, y) = f, denote 2 parametric partial differential equation with y being a parameter from a high-
dimensional parameter spacey = Re

sion: c and uy the associated solution in a Hilbert spaceji. After a high-fidelity
discretization, let b,(u", v) = fy(v) be th
y

€ associated variational form with " now belonging to the associated
. y
high-dimensional space U", where we

P h i
set D :=dim(U"). We moreover denote the coefficient vector of u with
respect to a suitable basijs of

by uh. Of key importance in this area is the parametric map given by

RP2Y sy ,, uh g RO such that  by(u", v) = f(v) for all v,
which in multi-query situations sy
curse of dimensionality could lea

We now aim to analyze whet
a very efficient and flexible met
From an expressivity viewpoint,

., . e, the
ch as complex design problems needs to be solved several times. If p is very larg
d to an exponential computational cost. rovide
her the parametric map can be solved by a deep neur?l ne.twork, whicth x::t;dr:annef-
hod, hopefully also circumventing the curse of dimensionality in an au :(D cirehithat
one might ask whether, for each € > 0, there does exist a neural networ (4.2) The
ID(y) - u, "< € forallyey. lexity of
exity o
urse of dimensionality can then be studied by analyzing how the complexity
type was proven in [18], the essence of which we now recall.

, ; i atisfies
There exists a neural network ® which approximates the parametric map, i.e., which satisfi
ependence on C(®) on p and D can be (polynomially) controlled.

- in thi ing is currently out
Analyzing the learning Procedure and the generalization ability of the neural network lntt:ISchrtsté gf dimensionality
of reach. Aiming to still determine whether a trained neural networks does not suffer from the

C which indi i curse of dimensionality
swell,in [11] extensi rical experiments were performed, which indicates that indeed the cu
is also beaten in practice.

ability of this approach to tackle the ¢
® depends on p and D. A result of this

Theorem 4.1.
(4.2), and its d



Comclunsion

Let us conclude with seven mathematical key problems of artificial
| intelligence as they were stated in [6]. Those constitute the main obstacles
| in Mathematical Foundations for Artificial Intelligence with its subfielqs
, expressivity, optimization, generalization, and explain ability as well as in
Artificial Intelligence for Mathematical Problems which focusses on the
application to inverse problems and partial differential equations.
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