Closure operator and α –ideals in 0-distributive lattices

S.S. Khopade¹, S. P. Thorat² and Laxmi Rathour³
¹ Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, Maharashtra, India – 416209 email: <u>santajikhopade@gmail.com</u>
² Vivekanand College, Kolhapur, Maharashtra, India – 416003 email: <u>thoratsanjay15@gmail.com</u>
³ Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl, Mizoram, India – 796 012 email: <u>laxmirathour817@gmail.com</u>
(Received: October 08,2023; In Format: October 29,2023; Revised: January 19, 2023; Accepted:)

Abstract

A closure operator on the lattice of the ideals of a bounded 0-distributive lattice is introduced. It is observed that the ideals which are closed with respect to this closure operator are α -ideals in it and conversely.

2020 Mathematical Sciences Classification: 06D75.

Keywords and Phrases: 0-distributive lattice, ideal, closure operator, homomorphism, α -ideal.

1.Introduction

As a generalization of the concept of distributive lattices on one hand and pseudocomplemented lattices on the other, 0-distributive lattices are introduced by Varlet [6]. C. Jayaram [3] defined and studied α -ideals in, 0-distributive lattices. Additional properties of α -ideals in 0-distributive lattice are obtained by Pawar et. al. in [4] and [5]. Separation theorem for α -ideals in 0-distributive lattice is proved in [2]. In [4], the authors have obtained a characterization of an α -ideal using a closure operator on the lattice of all ideals of a 0-distributive lattice. In this paper we introduce a new closure operator on the lattice of all ideals of a 0-distributive lattice and characterize α -ideals in terms of the ideals which are closed with respect to this closure operator. Further it is observed that in a given 0-distributive lattice the ideals which are closed under this closure operator are the α -ideals in it and conversely.

2 Preliminaries

Following are some basic concepts and results needed in the sequel from references. For other non-explicitly stated elementary notions please refer to [1]. A lattice L with 0 is said to be 0-distributive if $a \wedge b = 0$ and $a \wedge c = 0$ imply $a \wedge (b \vee c) = 0$ for any a, b, c in L. Throughout this paper L will denote a bounded 0-distributive lattice unless otherwise specified. For a lattice L, I(L) denotes the set of all ideals of L. Then $(I(L), \land, \lor)$ is a lattice where $I \land I = I \cap I$ and $I \lor I = (I \cup I]$, for any two ideals I and J of L. For any non- empty subset A of L, define $A^* = \{x \in L : x \land a = 0, d \in L\}$ for each $a \in A$. By A^{**} we mean $(A^*)^*$. Note that when $A = \{a\}$ then $A^* = (a]^*$ and also denoted by $(a)^*$. An ideal I in L is called annihilator ideal if $I = A^*$, for a nonempty subset A of L. Let L and L' denote bounded 0-distributive lattices and $f: L \to L'$ be homomorphism, f is called annihilator preserving homomorphism if $f(A^*) =$ ${f(A)}^*$ for any non-empty subset A of L. An ideal I of L is called α -ideal if ${x}^{**} \subseteq$ I for each $x \in I$. Closure operator on L is a mapping $f: L \to L$ satisfying the following conditions: (i) $x \le f(x)$, ii) $x \le y \Longrightarrow f(x) \le f(y)$ and f(f(x)) = f(x).

Result 2.1.(Varlet [6]). A lattice L with 0 is 0-distributive if and only if A^* is an ideal for any non-empty subset A of L.

Following result can be proved easily.

Result 2.2. In a 0-distributive lattice L, for all $a, b, c \in L$ we have

i) $\{a\}^{**} \cap \{b\}^{**} = \{a \land b\}^{**}.$

- ii) $\{a\}^* \cap \{b\}^* = \{a \lor b\}^*$.
- iii) $\{a\}^{**} = \{b\}^{**} \Longrightarrow \{a \land c\}^{**} = \{b \land c\}^{**}.$

Result 2.3 (Pawar and Mane [4]). In a bounded 0-distributive lattice L following statements are equivalent.

- (i) For $x, y \in L$, $\{x\}^* = \{y\}^*$, $x \in I \Longrightarrow y \in I$.
- (ii) $I = \bigcup \{ \{x\}^{**} | x \in I \}.$
- (iii) For $x, y \in L, h(x) = h(y), x \in I \Longrightarrow y \in I$,

where $h(x) = \{M / \text{ is minimal prime ideal containing } x\}$.

(iv) I is an α -ideal.

Result 2.4 (Jayaram [2]). Let L be a 0-distributive lattice. Let I be an α -ideal and S be a meet sub semi lattice of L such that $I \cap S = \emptyset$. Then there exists a prime α -ideal *P* in *L* containing *I* and disjoint with S.

Result 2.5 (Pawar and Mane [4]). Every annihilator ideal in a 0-distributive lattice *L* is an α -ideal.

Result 2.6 (Pawar and Khopade [5]). Let *L* and *L'* be any two bounded 0distributive lattices and let $f: L \to L'$ be an annihilator preserving onto homomorphism, Then

- (i) If *I* is an α -ideal of *L*, then f(I) is an α -ideal of *L'*.
- (ii) If *I*' is an α -ideal of *L*', then $f^{-1}(I')$ is an α -ideal of *L*.

3 Closure Operator

In this section we introduce a closure operator on I(L).

Define $B(L) = \{\{a\}^{**} / a \in L\}$. *L* being 0-distributive lattice, $B(L) \subseteq I(L)$ (by result 2.1) but, B(L) is not necessarily a sublattice of the lattice I(L). For this consider the following example.

Figure 3.1

Example 3.1 Consider the bounded 0-distributive lattice $L = \{0, a, b, c, d, e, 1\}$ as shown by the Hasse Diagramme in Figure 3.1. Here $\{a\}^{**} = \{0, a, b\}$ and $\{c\}^{**} = \{0, c\}$. Hence $\{a\}^{**} \lor \{c\}^{**} = \{0, a, b, c, d\} \notin B(L)$. Hence the set B(L) is a poset under set inclusion but need not be a sublattice of the lattice I(L).

For $\{a\}^{**}, \{b\}^{**} \in B(L)$. Define $\{a\}^{**} \sqcap \{b\}^{**} = \{a \land b\}^{**}$ and

 ${a}^{**} \sqcup {b}^{**} = {a \lor b}^{**}$. Then we have

Theorem 3.1 $(B(L), \sqcap, \sqcup)$ is a bounded lattice.

Proof. Obviously, $\{a \land b\}^{**}$ is the infimum of $\{a\}^{**}$ and $\{b\}^{**}$ in $(B(L), \subseteq)$. To prove $\{a \lor b\}^{**}$ is the supremum of $\{a\}^{**}$ and $\{b\}^{**}$ in $(B(L), \subseteq)$. $\{a \lor b\}^{**}$ is and upper bound of $\{a\}^{**}$ and $\{b\}^{**}$ in $(B(L), \subseteq)$. Let $\{c\}^{**}$ be any other upper bound of $\{a\}^{**}$ and $\{b\}^{**}$ in $(B(L), \subseteq)$. Let $t \in \{a \lor b\}^{**}$. Then $(t] \cap \{a \lor b\}^{*} = \{0\}$. By result 2.2 (ii) we get $(t] \cap [\{a\}^{*} \cap \{b\}^{*}] = \{0\}$, which implies $(t] \cap \{a\}^{*} \subseteq \{b\}^{**}$. But as $\{b\}^{**} \subseteq \{c\}^{**}$ we get $(t] \cap \{a\}^{*} \subseteq \{c\}^{**}$. Thus $(t] \cap \{a\}^{*} \cap \{c\}^{*} = \{0\}$, implies $(t] \cap \{c\}^{*} \subseteq \{a\}^{**}$. Again as $\{a\}^{**} \subseteq \{c\}^{**}$, we get $(t] \cap \{c\}^{*} \subseteq \{c\}^{**}$, that is $(t] \cap \{c\}^{*} = \{0\}$. Therefore $(t] \subseteq \{c\}^{**}$ which yields $t \in \{c\}^{**}$. This shows that $\{a \lor b\}^{**} \subseteq \{c\}^{**}$ and hence $\{a \lor b\}^{**}$ is the supremum of $\{a\}^{**}$ and $\{b\}^{**}$ in $(B(L), \subseteq)$. As $\{0\}^{**} = \{0\}$ and $\{1\}^{**} = L$ belong to $B(L), (B(L), \sqcap, \sqcup)$ is a bounded lattice.

Corollary 3.1. The lattice $(B(L), \sqcap, \sqcup)$ is a homomorphic image of the lattice *L*.

Proof. Define $\theta: L \to B(L)$ by $\theta(a) = \{a\}^{**}$ for each $a \in L$. Then $\theta(a \wedge b) = \{a \wedge b\}^{**} = \{a\}^{**} \sqcap \{b\}^{**} = \theta(a) \sqcap \theta(b)$ and $\theta(a \vee b) = \{a \vee b\}^{**} = \{a\}^{**} \sqcup \{b\}^{**} = \theta(a) \sqcup \theta(b)$ hold for all $a, b \in L$. Hence θ is a homomorphism. As θ is onto, the result follows.

Remark 3.1. Note that the homomorphism θ is not necessarily one-one. For this consider the 0-distributive lattice in Example 3.1. Here for $a \neq b$ in *L* we have $\{a\}^{**} = \{b\}^{**}$.

For any ideal *I* of *L*, define $\delta(I) = \{\{a\}^{**} / a \in I\}$ for any Ideal \overline{I} of B(L), define $\overleftarrow{\delta}(\overline{I}) = \{a \in L / \{a\}^{**} \in \overline{I}\}$. With these notations we prove

Theorem 3.2.

- (i) $\delta(I)$ is an ideal of B(L), for any ideal I of L.
- (ii) $\overleftarrow{\delta}(\overline{I})$ is an ideal of *L* for any ideal of \overline{I} of B(L).
- (iii) For any two ideals, *I* and *J* of $L, I \subseteq J \implies \delta(I) \subseteq \delta(J)$.
- (iv) For any two ideals \overline{I} and \overline{J} of $B(L), \overline{I} \subseteq \overline{J} \Longrightarrow \overleftarrow{\delta}(\overline{I}) \subseteq \overleftarrow{\delta}(\overline{J})$.

Proof. (i). Let *I* be any ideal of *L*. As $0 \in I, \{0\}^{**} = \{0\} \in \delta(I)$. Hence $\delta(I)$ is nonempty. Let $\{a\}^{**}, \{b\}^{**} \in B(L)$ such that $\{a\}^{**} \subseteq \{b\}^{**}$ and $\{b\}^{**} \in \delta(I)$. Then $\{b\}^{**} = \{x\}^{**}$ for some $x \in I$. Thus $\{a\}^{**} = \{a\}^{**} \sqcap \{b\}^{**} = \{a\}^{**} \sqcap \{x\}^{**} = \{a \land x\}^{**}$. As $a \land x \in I$, we get $\{a\}^{**} \in \delta(I)$. Let $\{a\}^{**}, \{b\}^{**} \in \delta(I)$. Therefore $\{a\}^{**} = \{x\}^{**}$ and $\{b\}^{**} = \{y\}^{**}$ for some $x, y \in I$. Hence $\{a\}^{**} \sqcup \{b\}^{**} = \{x\}^{**} \sqcup \{y\}^{**} = \{x \lor y\}^{**}$. As $x \lor y \in I$, we get $\{x \lor y\}^{**} \in \delta(I)$. Hence $\{a\}^{**} \sqcup \{b\}^{**} \in \delta(I)$. Therefore $\delta(I)$ is an ideal of B(L).

(ii) Let \overline{I} be any ideal of $B(L) \cdot \{0\}^{**} = \{0\} \in \overline{I}$ implies $0 \in \overline{\delta}(\overline{I})$. Hence $\overline{\delta}(\overline{I})$ is non-empty. Let $a, b \in L$ such that $a \leq b$ and $b \in \overline{\delta}(\overline{I})$. Then $\{a\}^{**} \subseteq \{b\}^{**}$ and $\{b\}^{**} \in \overline{I}$. \overline{I} being an ideal we get $\{a\}^{**} \in \overline{I}$. But then $a \in \overline{\delta}(\overline{I})$. Let $a, b \in \overline{\delta}(\overline{I})$. Then $\{a\}^{**}, \{b\}^{**} \in \overline{I}$ implies $\{a\}^{**} \sqcup \{b\}^{**} = \{a \lor b\}^{**} \in \overline{I}$. Therefore $a \lor b \in \overline{\delta}(\overline{I})$. This proves $\overline{\delta}(\overline{I})$ is an ideal of L.

(iii) Let *I* and *J* be two ideals of *L* such that $I \subseteq J$. Let $\{a\}^{**} \in \delta(I)$. Then $\{a\}^{**} = \{x\}^{**}$ for some $x \in I$. But then, since $I \subseteq J$ we get $x \in J$. This is turns gives $\{a\}^{**} \in \delta(J)$. Hence $\delta(I) \subseteq \delta(J)$.

(iv) Let \overline{I} and \overline{J} be any two ideals of B(L) such that $\overline{I} \subseteq \overline{J}$. Let $x \in \overleftarrow{\delta}(\overline{I})$. Then $\{x\}^{**} \in \overline{I}$ implies $\{x\}^{**} \in \overline{J}$. Hence $x \in \overleftarrow{\delta}(\overline{J})$ and the result follows.

As $\delta(I)$ is an ideal of B(L), for any ideal I of L, we have the mapping $\delta: I(L) \rightarrow I(B(L))$ is well defined where I(B(L)) denotes the lattice of all ideals of the lattice B(L). Further we have

Theorem 3.3 $\delta: I(L) \to I(B(L))\{0,1\}$ is a homomorphism.

Proof: Let *I* and *J* be any ideals in I(L). $\delta(I \cap J) \subseteq \delta(I) \cap \delta(J)$ (by Theorem 3.2 (iii)). Let $\{a\}^{**} \in \delta(I) \cap \delta(J)$. Then $\{a\}^{**} \in \delta(I)$ implies $\{a\}^{**} = \{i\}^{**}$ for some $i \in I$ and $\{a\}^{**} \in \delta(J)$ gives $\{a\}^{**} = \{j\}^{**}$ for some $j \in J$. Thus $\{a\}^{**} = \{i\}^{**} \sqcap \{j\}^{**} = \{i \land j\}^{**}$. As $i \land j \in I \cap J$, we get $\{a\}^{**} \in \delta(I \cap J)$. This shows that $\delta(I) \cap \delta(J) \subseteq \delta(I \cap J)$. Combining both the inclusions we get $\delta(I \cap J) = \delta(I) \cap \delta(J)$.

Now, again by Theorem 3.2 – (iii), $\delta(I) \lor \delta(J) \subseteq \delta(I \lor J)$. Let $\{a\}^{**} \in \delta(I \lor J)$. Hence $\{a\}^{**} = \{y\}^{**}$ for some $y \in I \lor J$. Therefore $y \leq i \lor j$ for some $i \in I$ and $j \in J$. This yields $\{y\}^{**} \subseteq \{i \lor j\}^{**} = \{i\}^{**} \sqcup \{j\}^{**}$. Therefore $\{a\}^{**} = \{y\}^{**} \in \delta(I) \lor \delta(J)$. Hence $\delta(I \lor J) \subseteq \delta(I) \lor \delta(J)$. Combining both the inclusions we get $\delta(I \lor J) = \delta(I) \lor \delta(J)$.

This proves that $\delta: I(L) \to I(B(L))$ is a homomorphism. Again $\delta((0)) = \{\{0\}^{**}\} = \{\{0\}\} and \delta((1)) = \{\{1\}^{**}\} = \{L\}$, shows δ is a $\{0,1\}$ homomorphism.

By theorem 3.2., we get two mappings $\delta: I(L) \to I(B(L))$ and $\overleftarrow{\delta}: I(B(L)) \to I(L)$. Hence $\delta \circ \overleftarrow{\delta}: I(B(L)) \to I(B(L))$ and $\overleftarrow{\delta} \circ \delta: I(L) \to I(L)$. About these two mappings we have

Theorem 3.4.

(i) $\delta \circ \overleftarrow{\delta}$ is a identity mapping on I(B(L)).

(ii) $\overleftarrow{\delta} \circ \delta$ is a closure operator on I(L).

Proof. (i) Let \overline{I} be any ideal of B(L). Let $\{x\}^{**} \in \delta \circ \overleftarrow{\delta}(\overline{I}) = \delta(\overleftarrow{\delta}(\overline{I}))$. Hence $\{x\}^{**} = \{y\}^{**}$ for some $y \in \overleftarrow{\delta}(\overline{I})$. But then $\{y\}^{**} \in \overline{I}$, which implies $\{x\}^{**} \in \overline{I}$. This gives $\delta \circ \overleftarrow{\delta}(\overline{I}) \subseteq \overline{I}$. Conversely, let $\{x\}^{**} \in \overline{I}$. Then $x \in \overleftarrow{\delta}(\overline{I})$ and consequently

 $\{x\}^{**} \in \delta(\overleftarrow{\delta}(\overline{I})).$ (since $\overleftarrow{\delta}(\overline{I})$ is an ideal of *L*). Hence $\overline{I} \subseteq \delta \circ \overleftarrow{\delta}(\overline{I})$. From both the inclusions we get $\delta \circ \overleftarrow{\delta}(\overline{I}) = \overline{I}$. Hence $\delta \circ \overleftarrow{\delta}$ is an identity mapping on I(B(L)).

(ii)Let $I \in I(L)$ and $x \in I$. Then $\{x\}^{**} \in \delta(I)$ and by Theorem 3.2 –(i), $\delta(I)$ is an ideal of B(L), which yields $x \in \overleftarrow{\delta} \circ \delta(I)$. Hence $I \subseteq \overleftarrow{\delta} \circ \delta(I)$. Let $I, J \in I(L)$ and $I \subseteq J$. As δ and $\overleftarrow{\delta}$ are isotone mappings (by Theorem 3.2), we get $\overleftarrow{\delta} \circ \delta(I) \subseteq \overleftarrow{\delta} \circ \delta(J)$.

Finally, Let $I \in I(L)$. As $I \subseteq \overleftarrow{\delta} \circ \delta(I)$, applying (II) we get $\overleftarrow{\delta} \circ \delta(I) \subseteq \overleftarrow{\delta} \circ \delta(\overleftarrow{\delta} \circ \delta(I))$. Conversely, let $x \in \overleftarrow{\delta} \circ \delta(\overleftarrow{\delta} \circ \delta(I))$. Then $\{x\}^{**} \in \delta(\overleftarrow{\delta} \circ \delta(I))$ implies $\{x\}^{**} = \{y\}^{**}$ for some $y \in \overleftarrow{\delta} \circ \delta(I)$. But then $\{y\}^{**} \in \delta(I)$, which implies $\{x\}^{**} \in \delta(I)$. This gives $x \in \overleftarrow{\delta} \circ \delta(I)$. This proves $\overleftarrow{\delta} \circ \delta(\overleftarrow{\delta} \circ \delta(I)) \subseteq \overleftarrow{\delta} \circ \delta(I)$. Combining both the inclusions we get $\overleftarrow{\delta} \circ \delta(\overleftarrow{\delta} \circ \delta(I)) = \overleftarrow{\delta} \circ \delta(I)$.

From (3.1), (3.2) and (3.3) we get $\delta \circ \delta$ is a closure operator on I(L).

Remark 3.2. The mapping $\delta: I(L) \to I(B(L))$ is a homomorphism follows from Theorem 3.3. Let \overline{I} be any ideal of B(L). As $\overleftarrow{\delta}(\overline{I})$ is an ideal of L and $\delta \circ \overleftarrow{\delta}(\overline{I}) = \overline{I}$, we get the mapping $\delta: I(L) \to I(B(L))$ is onto. Hence the lattice I(B(L)) is homomorphic image of lattice I(L).

4 α – ideals

In this section we show that the ideals in *L* which are closed with respect to the closure operator $\overleftarrow{\delta} \circ \delta$ defined on I(L) are α – ideals in L and conversely. Let C(L) denote the set of all ideals in *L* which are closed with respect to the closure operator $\overleftarrow{\delta} \circ \delta$ defined on I(L).

Thus $C(L) = \{I \in I(L): \overline{\delta} \circ \delta(I) = I\}$. Obviously, (0] and (1] belong to C(L). Hence C(L) is a non-empty subset of I(L) but not necessarily a sublattice of the lattice I(L). This follows by the 0-distributive lattice given in example 3.1. Here $C(L) = \{(0], (b], (c]\}$ and (b]V(c] = (d]. As $(d] \notin C(L)$, the subset C(L) is not a sublattice of the lattice I(L). Though C(L) does not form a sublattice of the lattice I(L), it forms a lattice on its own. This we prove in the following theorem.

Theorem 4.1. $(C(L), \overline{\Lambda}, \underline{\vee})$ is a bounded lattice where $\overline{\Lambda}$ and $\underline{\vee}$ are defined by $I \overline{\Lambda} J = I \cap J$ and $I \underline{\vee} J = \overleftarrow{\delta} \circ \delta(I \vee J)$ for $I, J \in C(L)$

Proof: (i) First we prove that for $I, J \in C(L), I \cap J \in C(L)$. As $\overleftarrow{\delta}$ and δ are isotone mappings, we get $\overleftarrow{\delta} \circ \delta$ is also isotone. Hence $\overleftarrow{\delta} \circ \delta(I \cap I) \subseteq \overleftarrow{\delta} \circ \delta(I) \cap \overleftarrow{\delta} \circ \delta(J)$.

Let $x \in \overline{\delta} \circ \delta(I) \cap \overline{\delta} \circ \delta(J)$. Then $\{x\}^{**} \in \delta(I) \cap \delta(J) = \delta(I \cap J)$. This gives $x \in \overline{\delta} \circ \delta(I \cap J)$. Hence $\overline{\delta} \circ \delta(I) \cap \overline{\delta} \circ \delta(J) \subseteq \overline{\delta} \circ \delta(I \cap J)$. Combining both the inclusions we get $\overline{\delta} \circ \delta(I \cap J) = \overline{\delta} \circ \delta(I) \cap \overline{\delta} \circ \delta(J) = I \cap J$ (since $I, J \in C(L)$). This proves $I \cap J \in C(L)$. Thus the infimum of $I, J \in C(L)$ is $(I \cap J)$. Hence $I \overline{\Lambda} J = I \cap J$.

(ii) First note that, by Theorem 3.4- (ii), $\overline{\delta} \circ \delta(I) \in C(L)$, for any ideal *I* of *L*. Let $I, J \in C(L)$. Then $I = \overline{\delta} \circ \delta(I) \subseteq \overline{\delta} \circ \delta(I \lor J)$ and $J = \overline{\delta} \circ \delta(J) \subseteq \overline{\delta} \circ \delta(I \lor J)$ (since $\overline{\delta} \circ \delta$ is isotone). Thus $\overline{\delta} \circ \delta(I \lor J)$ is an upper bound of *I* and *J* in *C*(*L*). Let $K \in C(L)$, such that $I \subseteq K$ and $J \subseteq K$. Then $I \lor J \subseteq K$ implies $\overline{\delta} \circ \delta(I \lor J) \subseteq \overline{\delta} \circ \delta(K) = K$ (since $K \in C(L)$). This shows that $\overline{\delta} \circ \delta(I \lor J)$ is the supremum of *I* and *J* in *C*(*L*) i.e. $I \lor J = \overline{\delta} \circ \delta(I \lor J)$. As (0] $\in C(L)$ and $L \in C(L)$, (*C*(*L*), $\overline{\Lambda}$, ∇) is a bounded lattice.

We know that the lattice I(B(L)) is a homomorphic image of the lattice I(L) (see Remark 3.2). But interestingly we have

Theorem 4.2. The lattice C(L) is isomorphic with the lattice I(B(L)).

Proof. Define the mapping $\psi: C(L) \to I(B(L))$ by $\psi(I) = \delta(I)$ for each $I \in C(L)$, which is clearly a well defined mapping.

(i)Let $\psi(I) = \psi(J)$ for $I, J \in C(L)$. Then we have $\delta(I) = \delta(J)$. Therefore $\overleftarrow{\delta} \circ \delta(I) = \overleftarrow{\delta} \circ \delta(J)$ which implies I = J (since $I, J \in C(L)$). This shows that ψ is one-one.

(ii) Let \overline{I} be any ideal of B(L). Then $\overleftarrow{\delta}(\overline{I})$ is an ideal of L (by theorem 3.2-(ii)) and $\delta \circ \overleftarrow{\delta}(\overline{I}) = \overline{I}$ (by theorem 3.4-(i)). Then $\overleftarrow{\delta} \circ \delta\left(\overleftarrow{\delta}(\overline{I})\right) = \overleftarrow{\delta}\left(\delta\left(\overleftarrow{\delta}(\overline{I})\right)\right) = \overleftarrow{\delta}\left(\delta\left(\overleftarrow{\delta}(\overline{I})\right)\right) = \overleftarrow{\delta}\left(\overline{\delta}(\overline{I})\right) = \overleftarrow{\delta}(\overline{I})$. This shows that $\overleftarrow{\delta}(\overline{I}) \in C(L)$). As $\psi\left(\overleftarrow{\delta}(\overline{I})\right) = \delta\left(\overleftarrow{\delta}(\overline{I})\right) = \delta \circ \overleftarrow{\delta}(\overline{I}) = \overline{I}$, we get ψ is onto.

(iii)Let $I, J \in C(L)$). Then by definition of ψ and by theorem 3.3 we get, $\psi(I \land J) = \psi(I \cap J) = \delta(I \cap J) = \delta(I) \cap \delta(J) = \psi(I) \cap \psi(J)$. And by definition of $\underline{\vee}$ in C(L) we get $\psi(I \vee J) = \delta(I \vee J) = \delta(\overline{\delta} \circ \delta(I \vee J)) = \delta(I \vee J)$ (since $\overline{\delta} \circ \delta$ is an identity map). Thus $\psi(I \vee J) = \delta(I \vee J) = \delta(I) \vee \delta(J) = \psi(I) \vee \psi(J)$. This proves that ψ is a homomorphism. From (i) – (iii) we get ψ is an isomorphism.

Following theorem gives a necessary and sufficient conditions for an ideal I of L to be a member of C(L).

Theorem 4.3. For any ideal *I of L*, following statements are equivalent.

(i). *I* ∈ *C*(*L*).
(ii). For *x*, *y* ∈ *L*, {*x*}** = {*y*}**, *x* ∈ *I* ⇒ *y* ∈ *I*(iii). For *x*, *y* ∈ *L*, {*x*}* = {*y*}*, *x* ∈ *I* ⇒ *y* ∈ *I*(iv). *I* =∪ {{*x*}** : *x* ∈ *I*}.
(v). For *x*, *y* ∈ *L*, *h*(*x*) = *h*(*y*), *x* ∈ *I* ⇒ *y* ∈ *I*, where *h*(*x*) = {*M*: *M* is a minimal prime ideal containing *x*}.
(vi). *I* is an α – ideal.

Proof. The equivalence of the statements (iii) to (vi) follows by Result 2.3.

(ii) \Leftrightarrow (iii): As $\{x\}^{**} = \{y\}^{**} \Leftrightarrow \{x\}^* = \{y\}^*$ for any $x, y \in L$, the equivalence follows. (i) \Rightarrow (ii): Let $I \in C(L)$. Let $x, y \in L$ such that $\{x\}^{**} = \{y\}^{**}$ and $x \in I$. As $x \in I$, we have $\{x\}^{**} \in \delta(I)$. But then, by assumption, we get $\{y\}^{**} \in \delta(I)$. This gives $y \in \overleftarrow{\delta} \circ \delta(I)$. Again by assumption that $I \in C(L)$, we get $y \in I$. Thus the implication follows. (ii) \Rightarrow (i): Let $I \in I(L)$ satisfying condition in (ii). By Theorem 3.4, we have $I \subseteq \overleftarrow{\delta} \circ \delta(I)$.

To prove $\delta \circ \delta(I) \subseteq I$. On contrary assume that $\delta \circ \delta(I) \not\subseteq I$. Then there exists $x \in \delta \circ \delta(I)$ such that $x \notin I$. Then $\{x\}^{**} \in \delta(I)$ which implies $\{x\}^{**} = \{y\}^{**}$ for some $y \in I$. But then, by assumption, $x \in I$; a contradiction. Hence $\delta \circ \delta(I) \subseteq I$.

I. Combining both the inclusions, we get $\overleftarrow{\delta} \circ \delta(I) = I$. Hence $I \in C(L)$ and the implication follows. Hence all the statements are equivalent.

Using the property that $I \in C(L)$ if and only if I is an α -ideal, proved in theorem, we get

Corollary 4.1. $(a] \in C(L)$ if and only if $(a] = \{a\}^{**}$ for any $a \in L$.

Proof. Let $(a] \in C(L)$. Then by Theorem 4.3, (a] is an α -ideal of L. This gives $\{a\}^{**} \subseteq (a]$ (by definition of α -ideal). As we obviously have $(a] \subseteq \{a\}^{**}$, the proof of if part follows. Conversely, suppose $(a] = \{a\}^{**}$. We know that every annihilator ideal is an α -ideal, therefore $\{a\}^{**} = (a]$ is an α -ideal. Thus again by Theorem 4.3, we get $(a] \in C(L)$.

 $I^* \in C(L)$ For any ideal *I* in *L*, because I^* is an α -ideal of *L* (see result 2.5). Hence we have

Corollary 4.2. The lattice $(C(L), \overline{\Lambda}, \underline{\vee})$ is a pseudo complemented lattice.

Define $A_0(L) = \{\{x\}^* : x \in L\}$. Then $(A_0(L), \widehat{\Lambda}, \widetilde{\vee})$ is a lattice, where $\{x\}^* \widehat{\Lambda} \{y\}^* = \{x \vee y\}^*$ and $\{x\}^* \widetilde{\vee} \{y\}^* = \{x \wedge y\}^*$. This lattice is called as a lattice of all annulets of *L*. For any ideal *I* in *L*, the set $\{\{x\}^* : x \in I\}$ is a filter in $A_0(L)$ and for any filter *F* in $A_0(L)$, the set $\{x \in L : \{x\}^* \in F\}$ is an ideal of *L*. Let $\mathcal{F}(A_0(L))$ denote the lattice of all filters in $A_0(L)$. Then the maps $\alpha : I(L) \to \mathcal{F}(A_0(L))$ defined by $\alpha(I) = \{\{x\}^* : x \in I\}$ and $\beta : \mathcal{F}(A_0(L)) \to I(L)$ defined by $\beta(F) = \{x \in L : \{x\}^* \in F\}$ are well defined isotone maps.

We need the following results from [4]:

Lemma 4.1 (Theorem 9 in [4]).

The map $\beta \circ \alpha : I(L) \to I(L)$ is a closure operator on I(L).

Lemma 4.2 (Theorem 10 in [4]).

For any ideal of *I* in *L*, following statements are equivalent.

(i). I is an α -ideal.

(ii). $\beta \circ \alpha(I) = I$.

Using above two lemmas and Theorem 4.3 we get $C(L) = \{I \in I(L): \overline{\delta} \circ \delta(I) = I\}$ $I = \{I \in I(L): \beta \circ \alpha(I) = I\}$. Hence an ideal *I* in *L* is closed with respect to the closure operator $\overline{\delta} \circ \delta$ if and only if it is closed with respect to the closure operator $\beta \circ \alpha$ defined on I(L). Thus we have

Corollary 4.3. For any ideal *I* of *L*, $\overleftarrow{\delta} \circ \delta(I) = I$ if and only if $\beta \circ \alpha(I) = I$.

Let *I* be an ideal of *L*. If there exists a prime ideal *P* of *L* such that $I \subseteq P$ and *P* is minimal in the class of all prime ideals containing *I*, then *P* is called a prime ideal belonging to *I*. We know that any prime ideal of *L* need not be an α -ideal. For this consider the lattice $L = \{0, a, b, c, d, e, 1\}$ whose Hasse Diagram is as in Figure 3.1. The ideal (e] is a prime ideal but not an α -ideal. For, $d \in (e]$ but $(d]^{**} = L \nsubseteq (e]$.

In the following theorem we show that a prime ideal belonging to an α -ideal is an α -ideal.

Theorem 4.4. Let *I* be an α -ideal of *L*. Let *P* be a prime ideal belonging to *I*, then *P* is an α -ideal.

Proof. Suppose *P* is not an α -ideal. Hence there exist *x*, *y* in *L* such that $\{x\}^{**} = \{y\}^{**}, x \in P$ but $y \notin P$ (see theorem 4.3). Consider the filter $F = (L \setminus P) \lor [x \land y)$. Claim that $F \cap I = \emptyset$. Let $F \cap I \neq \emptyset$. Select $a \in F \cap I$. Then $a \in F$ implies $a \ge r \land s$ for some $r \in (L \setminus P)$ and $s \ge x \land y$. But then $a \ge r \land x \land y$ and therefore $r \land x \land y \in I$ as $(a \in I)$. Since $\{x\}^{**} = \{y\}^{**}$, using the Result 2.2, we get $\{r \land x\}^{**} = \{r \land y\}^{**}$ and hence $\{r \land x \land y\}^{**} = \{r \land y\}^{**}$. Since $r \land x \land y \in I$ and *I* is an α -ideal, by theorem 4.3, we get $r \land y \in I$. Hence $r \land y \in P$ (since $I \subseteq P$). Now $r \land y \in P$, *P* is a prime ideal and $r \notin P$ imply $y \in P$; which contradicts our assumption. Hence we must have $F \cap I = \emptyset$. Therefore, by result 2.4, there exists a prime ideal *Q* containing *I* and disjoint with *F*. Thus $Q \subseteq P$. Moreover $F \cap Q = \emptyset$ and $x \land y \in F$ implies $x \land y \notin Q$. Hence $Q \neq P$ (since $x \in P \Rightarrow x \land y \in P$) *i.e.* $Q \subset P$. But this contradicts to the fact that *P* is minimal in the class of all prime ideals containing *I*. Hence we must have *P* is a an α -ideal.

Making an appeal to Theorem 4.1, Theorem 4.3 and Result 2.6, we establish

Corollary 4.4. Let *L* and *L'* be bounded 0-distributive lattices and let $f: L \to L'$ be an annihilator preserving onto homomorphism. Then we have

(i). If $I \in C(L)$, then $f(I) \in C(L')$. (ii). If $I' \in C(L')$, then $f^{-1}(I') \in C(L)$.

5 Conclusion

The present investigation provides a new way to define closure operator on the lattice of all ideals of bounded 0-distributive lattice. Moreover the ideals closed with respect to this closure operator are α -ideals. Therefore this work will motivate and useful to study more properties of α -ideals.

References

[1] G. Gratzer, Lattice Theory – first concepts and distributive lattices, Freeman and Company, San Francisco, 1971.

[2] C. Jayaram 1- modular lattices, Rev. Roum. Pure Appliques, 29(1984), 163 – 169.

[3] C. Jayaram, Prime α -ideals in a 0-distributive lattice, J. Pure and appl. Math, 17 (3) (1986), 331-337

[4] Y.S. Pawar and D. N. Mane, α -ideals in a 0-distributive semilattices and 0-distributive lattices, Indian J. Pure App., Math., 24 (1993), 435-443.

[5] Y.S. Pawar and S.S. Khopade, α -ideals and annihilator ideals in 0-distributive lattices, Acta Univ. Palacki Olomuc., Fac. Rer. Nat. Math. 49(2010), 63-74.

[6] J. Valet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Liege., 37 (1968), 149-158.