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Abstract
A closure operator on the lattice of the ideals of a bounded O-distributive lattice is
introduced. It is observed that the ideals which are closed with respect to this closure
operator are a-ideals in it and conversely.
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1.Introduction

As a generalization of the concept of distributive lattices on one hand and pseudo-
complemented lattices on the other, O-distributive lattices are introduced by Varlet [6].
C. Jayaram [3] defined and studied « -ideals in, O-distributive lattices. Additional
properties of a-ideals in O-distributive lattice are obtained by Pawar et. al. in [4] and
[5]. Separation theorem for a-ideals in O-distributive lattice is proved in [2]. In [4], the
authors have obtained a characterization of an a-ideal using a closure operator on the
lattice of all ideals of a O-distributive lattice. In this paper we introduce a new closure
operator on the lattice of all ideals of a O-distributive lattice and characterize a-ideals
in terms of the ideals which are closed with respect to this closure operator. Further it is
observed that in a given O-distributive lattice the ideals which are closed under this

closure operator are the a-ideals in it and conversely.

2 Preliminaries

Following are some basic concepts and results needed in the sequel from references.
For other non-explicitly stated elementary notions please refer to [1]. A lattice L with 0O
is said to be O-distributive ifaAb =0anda Ac =0 imply aAN(bVvc)=0for
any a, b, c in L. Throughout this paper L will denote a bounded O-distributive lattice
unless otherwise specified. For a lattice L, (L) denotes the set of all ideals of L .Then
(I(L), A, V)isa lattice where I AJ =1nN ] and I1v] = (u/]],forany two
ideals I and J of L . For any non- empty subset A of L, defineA*={x € L:xAa =0,
for each a € A}. By A™ we mean(A™)*. Note that when A = {a} then A* = (a]* and
also denoted by (a)*. An ideal | in L is called annihilator ideal if I = A*, for a non-
empty subset A of L. Let L and L' denote bounded O-distributive lattices and f: L — L'
be homomorphism, f is called annihilator preserving homomorphism if f(4*) =
{f (A)}" for any non-empty subset A of L. An ideal | of L is called a-ideal if {x}* <
I for each x € I. Closure operator on L is a mapping f: L — L satisfying the following

conditions: () x < f(x), iD)x<y= f(x) < f(y) and f(f(x)) = f(x).



Result 2.1.(Varlet [6]). A lattice L with O is O-distributive if and only if A* is an ideal
for any non-empty subset A of L.

Following result can be proved easily.
Result 2.2. In a O-distributive lattice L, for all a, b, c € L we have

i) {a}" n{b}™ ={a A b}
i)  {a}' n{b} ={aVb}.
i) f{a}*={}*={anc}*={bAc}".

Result 2.3 (Pawar and Mane [4]). In a bounded O-distributive lattice L following
statements are equivalent.

() Forx,yel, {x})={y}, x el=>ye€l.
(i) I=uU{{x}"|xell.
(iii) Forx,y € L,h(x) =h(y),x el = y €,

where h(x) = {M / is minimal prime ideal containing x}.
(iv) [Iisan a-ideal.

Result 2.4 (Jayaram [2]). Let L be a O-distributive lattice. Let | be ana-ideal and S be a
meet sub semi lattice of L such that I NS = @. Then there exists a prime a-ideal P
in L containing Iand disjoint with S.

Result 2.5 (Pawar and Mane [4]). Every annihilator ideal in a O-distributive lattice L is
an a-ideal.

Result 2.6 (Pawar and Khopade [5]). Let L and L' be any two bounded 0-
distributive lattices and let f: L — L’be an annihilator preserving onto homomorphism,
Then

(i) IfIisan a-ideal of L, then f(I) is an a-ideal of L'.
(i) If I'isan a-ideal of L', then f~1(I") is an a-ideal of L.

3 Closure Operator

In this section we introduce a closure operator on I(L).



Define B(L) = {{a}"* /a € L}. L being O-distributive lattice, B(L) < I(L) (by result
2.1) but, B(L) is not necessarily a sublattice of the lattice I(L). For this consider the
following example.
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Example 3.1 Consider the bounded O-distributive lattice L = {0,a,b,c,d,e, 1} as
shown by the Hasse Diagramme in Figure 3.1. Here {a}** = {0, a, b} and {c}” =
{0,c}. Hence {a}* v {c}* = {0,a,b,c,d} & B(L). Hence the set B(L) is a poset under
set inclusion but need not be a sublattice of the lattice 1(L).

For {a}™,{b}** € B(L). Define {a}** N {b}** = {a A b} and
{a}™ U {b}™ = {a Vv b}*. Then we have
Theorem 3.1 (B(L),n,U) is a bounded lattice.

Proof. Obviously, {a A b}* is the infimum of {a}** and {b}** in (B(L),S). To prove
{a v b} is the supremum of {a}** and {b}** in (B(L), <S). {a Vv b}** is and upper bound
of {a}*™ and {b}** in (B(L), ©). Let {c}** be any other upper bound of {a}** and {b}**
in (B(L),<S). Lett € {aVv b}™. Then (t] n{aV b} = {0}. By result 2.2 (ii) we get
(t] n [{a}* n{b}*] = {0}, which implies (t] n {a}* < {b}*. But as {b}"* < {c}"* we
get (t] Nn{a}* < {c}**. Thus (t] n{a}* N {c}* = {0}, implies (t] N {c}* < {a}*™. Again
as {a}™ < {c}™ ,we get (t] n{c} € {c}™ that is (t] n{c}* = {0}. Therefore (t] <
{c}**which yields t € {c}**. This shows that {a vV b}** € {c}** and hence {a vV b}"* is
the supremum of {a}** and {b}** in (B(L), ). As {0}"* = {0} and {1}** = L belong to
B(L), (B(L),n,u) is a bounded lattice.

Corollary 3.1. The lattice (B(L),Mn,u) is a homomorphic image of the lattice L.



Proof. Define 6:L - B(L) by 06(a) ={a}* for each a€ L. Then 8(aAb) =
{anb}* ={a}* n{b}*=0(a) N 0(b) and 8(avb)={aVvb}y*={a}*u
{b}"*=0(a) U 6(b) hold for all a,b € L. Hence 6 is a homomorphism. As @ is onto,
the result follows.

Remark 3.1. Note that the homomorphism 6 is not necessarily one-one. For this
consider the O-distributive lattice in Example 3.1. Here for a # b in L we have {a}** =

For any ideal I of L, define §(I) = {{a}** / a € I} for any Ideal I of B(L), define
5 () ={a€eL/ {a}** €T} With these notations we prove

Theorem 3.2.
(1) &(I) is an ideal of B(L), for any ideal I of L.
(i) 5 (T) is an ideal of L for any ideal of T of B(L).

(iii) For any two ideals, Iand Jof L, 1 € ] = &) < §(J).
(iv) For any two ideals 7 and J of B(L),T €] =6 1) <6 (J).

Proof. (i). Let I be any ideal of L. As 0 € I,{0}** = {0} € 6(I). Hence §(I) is non-
empty. Let {a}*", {b}*"* € B(L) such that {a}** € {b}* and {b}** € §(I). Then {b}** =
{x}* for somex € I. Thus {a}™ ={a}” n{b}™ ={a}”™ N {x}* ={aAx}". As
anx€l, we get {a}** € 6(I). Let {a}" {b} € §() . Therefore {a}” =
{x}* and {b}** = {y}** for some x,y € I. Hence {a}™ u{b}™ ={x}" u{y}” =
{xvy}™. As xvyel , we get {xvy}*edsl). Hence {a}™ u{b}™ e
6(1). Therefore §(1) is an ideal of B(L).

(ii) Let T be any ideal of B(L).{0}** = {0} €T implies 0 € & (T). Hence & (T) is
non-empty. Let a,b € Lsuchthata=<bandb € 3—(1_) . Then {a}* € {b}* and
(b}* eT.T being an ideal we get{a}** €T. But thena € & (I). Leta, b € & (I).
Then {a}"”,{b}** € I implies {a}*™ u{b}*={avb}™ €l . Therefore avbE€
5 (T). This proves 8 (T) is an ideal of L.

(iii) Let I and J be two ideals of L such that I < J. Let {a}"* € §(I). Then {a}** =

{x}** for some x € I.But then, since I < ] we get x € J. This is turns gives {a}** €
§(J). Hence 6(1) < 5()).



(iv) Let Tand Jbe any two ideals of B(L)such thatT < J.Letx € & (T). Then {x}** € T
implies {x}** € J. Hence x € (5(]_) and the result follows.

As 6(I) is an ideal of B(L), for any ideal I of L, we have the mapping &:1(L) -
I(B(L)) is well defined where I(B(L)) denotes the lattice of all ideals of the lattice
B(L). Further we have

Theorem 3.3 6:1(L) - I1(B(L)){0,1} is a homomorphism.

Proof: Let I and J be any ideals in I(L). 5(InJ) € §(I) n §(J) (by Theorem 3.2 (iii)).
Let {a}™ € (1) N S5(). Then {a}™ € §(I) implies {a}™ = {i}** for some i € I and
{a}™ € 6()) gives {a}™ = {j}** for some j € J. Thus {a}"* = {i}** n {j}"* = {i Aj}™.
AsiAnjeIn], we get {a}*" € I NJ). This shows that S(I)NSJ) € §UNJ).
Combining both the inclusions we get §(I nJ) = §(1) n §(J).

Now, again by Theorem 3.2 — (iii), (1) V&(J) € S V]). Let{a}*™ € 6(I v]).Hence
{a}™ = {y}™ for some y € I v ]. Therefore y <iVvj for some i€l and j €J. This
yields {y}*™ < {i v} = {i}** u {j}**. Therefore {a}"* = {y}** € §(I) v6() . Hence
S(IVv]) <) v E(J). Combining both the inclusions we get (I v ]) = 6(I) vV §()).
This proves that 8:1(L) - I(B(L)) is a homomorphism. Again §((0]) = {{0}**} =
{{0}} ands((1]) = {{1}**} = {L}, shows & is a {0,1} homomorphism.

By theorem 3.2., we get two mappings &:1(L) - I(B(L)) and 5 : 1(B(L)) - I(L).

Hence 506 : 1(B(L)) - 1(B(L)) and 5 o6& :1(L) > I(L). About these two mappings
we have

Theorem 3.4.
(i) 6 o & is a identity mapping on I(B(L)).
(i) 5 o & isaclosure operator on I(L).

Proof. (i) Let T be any ideal of B(L). Let {x}** € § o & (I)=6(5 (I)). Hence {x}** =
{y}*for some y € 5 (). But then {y}** € T, which implies {x}** € T. This gives
5068 (I) < T.Conversely, let {x}** € I. Then x € 5 (T) and consequently



{x}** € §(& (I)).(since & (T)is an ideal of L). Hence T 668 (I). From both the
inclusions we get § o 6 (T) = T. Hence § o § is an identity mapping on I(B(L)).

(iLet I € I(L) and x € I. Then {x}** € §(I) and by Theorem 3.2 —(i), §(I)is an ideal
of B(L), which vyields x € 5o 6(1). Hencel c 5 o 6(1). Letl,JeI(L)andI € ]. As
& and & are isotone mappings (by Theorem 3.2), we get 5 o86(DCS o 5()).

Finally, Let 1 €I(L). As 1S 68 o8(), applying (I) we get 8 o 5(I) S8 o
1) ((5 o 6(1)). Conversely, let x € 506 (3 ° 5(1)).Then {x}*€ b ((5 o 5(1)) implies
{x}™ = {y}** for some y € 5 o 6(I). But then {y}*™ € §(I), which implies {x}** €
§(I). This gives x € 5o 6(1) .This proves 506 (}? o 6(1)) cs o §(I). Combining

both the inclusions we get 508 ((5 o 6(1)) =3 o 6(D).

From (3.1), (3.2) and (3.3) we get 5 o4& isaclosure operator on I(L).

Remark 3.2. The mapping &:1(L) - I(B(L)) is a homomorphism follows from
Theorem 3.3. Let T be any ideal of B(L). As & (T) is an ideal of Land &0 8 (T)=I,
we get the mapping &:1(L) - I(B(L)) is onto. Hence the lattice [(B(L)) is
homomorphic image of lattice I(L).

4 o — ideals

In this section we show that the ideals in L which are closed with respect to the closure
operator 5 o & defined on I (L) are a — ideals in L and conversely. Let C (L) denote the

set of all ideals in L which are closed with respect to the closure operator 5 o & defined
on I(L).

Thus C(L) ={I € I(L):5 o3(I) =1I}. Obviously, (0] and (1] belong to C(L). Hence
C(L) is a non-empty subset of I(L) but not necessarily a sublattice of the lattice
I(L).This follows by the O-distributive lattice given in example 3.1. Here C(L) =
{(0], (b], (c]} and (b]V(c] = (d]. As (d] & C(L), the subset C(L)is not a sublattice of
the lattice I(L). Though C(L)does not form a sublattice of the lattice I(L), it forms a
lattice on its own. This we prove in the following theorem.



Theorem 4.1. (C(L), A, V) is a bounded lattice where A and Vv are defined by
INJ=InjandIV J =35 o8I V]))forl,J € C(L)

Proof: (i) First we prove that for I,J € C(L),InJ € C(L). As 5 and & are isotone
mappings, we get S o5 is also isotone. Hence 5 o o(INI) < 5 o3()NBG o o(J).

Let x €6 o8(1) NS o8(J). Then {x}** € (1) n 8(J) = §U nJ). This gives x € 5 o
3(INJ). Henced o 3(1) Nd ©5(J) €6 o d(I NJ). Combining both the inclusions we
get Sod(INN=508DNs5(J)=1INn]J (since I,] € C(L)). This provesINnj €
C(L). Thus the infimumof I,J e C(L)is(INJ).Hence IAN] =1N].

(if) First note that, by Theorem 3.4- (ii), 5 o 6(1) € C(L), for any ideal I of L. Let
I] EC(L). ThenI=6 o8()S8 o8(Uv))and]=68 o8(J)S o 8UV])
(sinceg o & is isotone). Thus & o 8(1v])is an upper bound of I and J in C(L). Let
KeC(L), suchthat I cKandJ<S K. ThenIVv] €K impliesf o S(IV]) S 6 o
8(K) = K (since K € C(L)). This shows that 5 o 8(UV])) is the supremum of
IandJinC(L) ie. I v] =8 o 8UV]). As (0] €C(L) and L € C(L), (C(L), A,
V) is a bounded lattice.

We know that the lattice I(B(L)) is a homomorphic image of the lattice I(L) (see
Remark 3.2). But interestingly we have

Theorem 4.2. The lattice C(L)is isomorphic with the lattice I(B(L)).

Proof. Define the mapping y:C(L) - I(B(L)) by () =6) for each I€
C (L), which is clearly a well defined mapping.

(HLety(I) =y () forI,] € C(L). Then we have 6(I) = 6(J). Therefore 5o 6(1) =
5 o 8(J) which implies I = J (since I,] € C(L)). This shows that i is one-one.

(i) Let T be any ideal of B(L). Then & (T) is an ideal of L (by theorem 3.2-(ii)) and & o
5(T)=T (by theorem 3.4-(i). Then & o4& (3—(1_)) =5 (6 (3—(1_))) =
(60 8 )) =5 (). This shows that § (T) € C(L)). Asy (5 (1)) = §(5 (M) =
o 6 (I)=1,wegety is onto.



(iii)Let I,] € C(L)). Then by definition of ¢ and by theorem 3.3 we get, (I A J) =
YUANn)=6N])=8U)NJ) =yvI)ny(J). And by definition of v in C(L)
we get p(Iv J)=68(IV J)=68(8 o8I V]))=86UV]) (since § o6 is an identity

map). Thus(Iv J) = UV J) =8 vE(Y) = () v P(J). This proves that ¢ is
a homomorphism. From (i) — (iii) we get i is an isomorphism.

Following theorem gives a necessary and sufficient conditions for an ideal I of L to be
a member of C(L).

Theorem 4.3. For any ideal I of L, following statements are equivalent.
(). 1 € C(L).
(ii). Forx,y € L {x}" ={y}", x€el=yel
(iii). Forx,y € L {x}={y}",x€el=>ye€e I
(iv). I =Uu {{x}": xel}.
(v). Forx,y € L h(x) = h(y),x€el=>ye€E I,
where h(x) = {M: M is a minimal prime ideal containing x}.
(vi). I isan a — ideal.
Proof. The equivalence of the statements (iii) to (vi) follows by Result 2.3.

(i) & (iii): As {x}" ={y}" = {x} ={y} foranyx,y € L, the equivalence
follows. (i) =(ii): LetI € C(L). Letx,y € L such that {x}** = {y}* and x € I. As
x € I, we have {x}** € §(I). But then, by assumption, we get {y}** € 6(I). This
gives y € 5 o 5(D). Again by assumption that I € C(L), we get y € I. Thus the
implication follows. (ii) = (i): Let I € I(L) satisfying condition in (ii). By Theorem
3.4, wehave ] € § o (D).

To prove 5o 6(I) < I. On contrary assume that 5 o 6(I) € 1. Then there exists x €
5o &(I) such that x ¢ I. Then {x}** € &§(I) which implies {x}** = {y}** for some
y € I . But then, by assumption, x € I ; a contradiction. Hence 5 o () <



1. Combining both the inclusions, we get (6_05(1) =] . Hence I € C(L) and the
implication follows. Hence all the statements are equivalent.

Using the property that I € C(L) if and only if I is an a-ideal, proved in theorem, we
get

Corollary 4.1. (a] € C(L) ifand only if (a] = {a}* forany a € L.

Proof. Let (a] € C(L). Then by Theorem 4.3, (a] is an a-ideal of L. This gives
{a}™ € (a] (by definition of a-ideal). As we obviously have (a] € {a}**, the proof of
if part follows. Conversely, suppose (a] = {a}*. We know that every annihilator
ideal is an a-ideal, therefore {a}** = (a] is an a-ideal. Thus again by Theorem 4.3,
we get (a] € C(L).

I* € C(L) Forany ideal I in L, because I" is an a-ideal of L (see result 2.5). Hence we
have

Corollary 4.2. The lattice (C(L), A, V) is a pseudo complemented lattice.

Define Ay(L) = {{x}*:x € L}. Then (4,(L), A, V) is a lattice, where {x}* A {y}* =
{xVvy}and{x} V{y}* = {x Ay} This lattice is called as a lattice of all annulets of
L.For any ideal I in L, the set {{x}*:x € I} is a filter in Ay,(L) and for any filter F in
Ao(L), the set{x € L:{x}* € F}is an ideal of L. Let F(4,(L)) denote the lattice of

all filters in Ao (L). Then the maps a: I(L) - F(Aq(L)) defined by a(I) = {{x}*:x €
I}and B: F(Ao(L)) — I(L) defined by B(F) = {x € L: {x}* € F}are well defined
isotone maps.

We need the following results from [4]:

Lemma 4.1 (Theorem 9 in [4]).

The map B oa : I(L) - I(L) is a closure operator on I(L).
Lemma 4.2 (Theorem 10 in [4]).

For any ideal of I in L, following statements are equivalent.
(). I isan «a-ideal.

(ii). B o a(l) = 1.



Using above two lemmas and Theorem 4.3 we get C(L) = {I € I(L):(S_o 5() =
I} ={l € I(L): Boa(l) =1}. Hence an ideal I in L is closed with respect to the

closure operator 5 o §if and only if it is closed with respect to the closure operator
B o a defined on I(L). Thus we have

Corollary 4.3. For any ideal I of L, 5 e () =1Iifandonlyif 8 o a(l) = 1.

Let I be an ideal of L. If there exists a prime ideal P of L such that € P and P is
minimal in the class of all prime ideals containing I, then P is called a prime ideal
belonging to I. We know that any prime ideal of L need not be an a-ideal. For this
consider the lattice L = {0, a, b, c,d, e, 1} whose Hasse Diagram is as in Figure 3.1. The
ideal (e] is a prime ideal but not an a-ideal. For, d €(e] but (d]** = L Z(e].

In the following theorem we show that a prime ideal belonging to an a-ideal is an a-
ideal.

Theorem 4.4. Let ] be an a-ideal of L. Let P be a prime ideal belonging to I, then P is
an a-ideal.

Proof. Suppose P is not an «-ideal. Hence there exist x,y in L such that {x}"* =
{y}*,x e Pbut y ¢ P (see theorem 4.3). Consider the filter F = (L\P) V [x A y).
Claim that FNI =@.Let FNI # @. Select a € FNI. Then a € F implies a > r A
s for somer € (L\P)ands = x Ay.But thena =r Ax Ay and thereforerAx Ay €
I as (a € 1). Since {x}** = {y}**, using the Result 2.2, we get {r Ax}"* = {r Ay}*
and hence {rAx Ay} ={rAy}”™.SincerAxAy el and I is an a-ideal, by
theorem 4.3, we getr Ay el.Hencer Ay € P(sincel € P). Nowr Ay €eP,P isa
prime ideal and r € P imply y € P; which contradicts our assumption. Hence we must
have F NI = @. Therefore, by result 2.4, there exists a prime ideal Q containing I and
disjoint with F. Thus Q € P. Moreover FNQ =@ andx Ay € F implies x Ay &
Q.Hence Q# P (sincex e P = x Ay € P)i.e.Q c P.But this contradicts to the fact
that P is minimal in the class of all prime ideals containing I . Hence we must have P is
an a-ideal.

Making an appeal to Theorem 4.1, Theorem 4.3 and Result 2.6, we establish

Corollary 4.4. Let L and L' be bounded O-distributive lattices and let f: L — L'be an
annihilator preserving onto homomorphism. Then we have



(i). If I € C(L), then f(I) € C(L).
(i). IF I’ € C(L'), then f~1(I") € C(L).

5 Conclusion

The present investigation provides a new way to define closure operator on the lattice of
all ideals of bounded O-distributive lattice. Moreover the ideals closed with respect to
this closure operator are a-ideals. Therefore this work will motivate and useful to study
more properties of a-ideals.
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