Internal Exam

Sem -1 Sub - Algebra

The respondent's email (abhishektambe36@gmail.com) was recorded on submission of this form.
Email * abhishektambe36@gmail.com
Name *
Abhishek Tambe
Roll No * 1239
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- A
- E
- \bigcirc
- O D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- C
- O D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{a \in IR}, a \neq 0 \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- E
- \bigcirc C
- D

) D

* 2 points

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial	
b) Non-abelian c) Infinite cyclic	
c) Infinite cyclic d) Finite cyclic	

ОВ

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
ОВ	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A

B

C

D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (sutarshivani1111@gmail.com) was recorded on submission of this form.

Email *
sutarshivani1111@gmail.com
Name *
Shivani Anil Sutar
Roll No *
1237
Class *
M.Sc I ▼
Questions
All questions are compulsory.
danaman and annihanan 1.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{a \in IR}, a \neq 0 \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- E
- \bigcirc C
- \bigcirc D

) D

*

The group integers under addition has

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

a) Normalb) Abelianc) Non-abeliand) Simple

D

*		2 points
Nu	mber of elements of order 2 in S_3 x Z_4 is	
1	a) 6 b) 7 c) 8 d) 9	
0	A	
0	В	
O	C	
0	D	
*		2 points
The	e fundamental group of circles is	
a) Trivial	
b) Non- <u>abelian</u>	
C) Infinite cyclic	

d) Finite cyclic

B

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
ОВ	
○ c	

*

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (kamblebhimrao1990@gmail.com) was recorded on submission of this form.

Email * kamblebhimrao1990@gmail.com
Name * Manisha Bhimrao Kamble
Roll No *
1213
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- () D

*

2 points

Number of generators of cyclic group of order 72 is

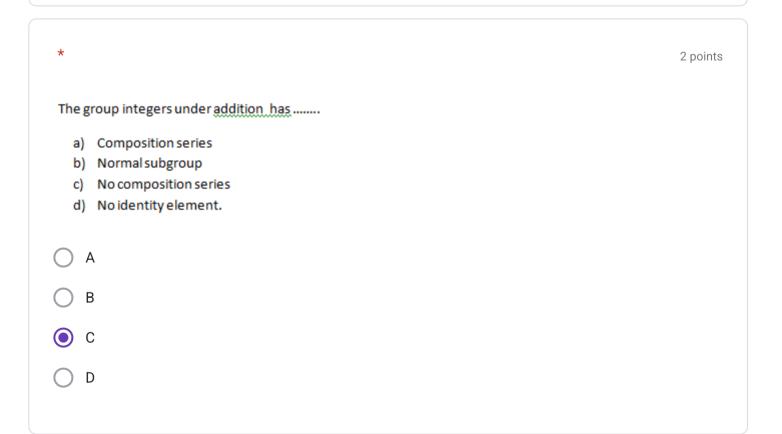
- a) 62
- b) 23
- c) 42
- d) 49
- A
- **О** В
- O C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{a \in IR}, a \neq 0 \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- (E
- \bigcirc C
- \bigcirc D

) D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*		2 points
Nu	mber of elements of order 2 in S_3 x Z_4 is	
t c	a) 6 b) 7 c) 8 d) 9	
0	A	
0	В	
0	C	
O	D	
*		2 points
The	fundamental group of circles is	
a		
b	* *********	
C) Infinite cyclic	

d) Finite cyclic

ОВ

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A

B

C

D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (sa9011171647@gmail.com) was recorded on submission of this form.

Email * sa9011171647@gmail.com
Name * Shubham Tanaji Kamble
Roll No * 1215
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{a \in IR}, a \neq 0 \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- C
- D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4 c) n≥ 5	
d) n≥ 6	

O A

ОВ

C

O D

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
○ c	
D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	

ОВ

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (sharayudurugale22@gmail.com) was recorded on submission of this form.

Email * sharayudurugale22@gmail.com
Name * Sharayu Dinkar Durugale
Roll No * 1207
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- A
- (E
- (D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- C
- O D

) D

D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	
ОВ	

C

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (shrutikhochage@gmail.com) was recorded on submission of this form.

Email *
shrutikhochage@gmail.com
Name *
Shruti Khochage
Roll No *
1217
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- () A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{a \in IR}, a \neq 0 \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- \bigcirc C
- D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
● C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
 a) n≥ 3 b) n≥ 4 c) n≥ 5 d) n≥ 6 	
○ A	

ОВ

C

*

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

* 2 points

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (ingaleaakanksha@gmail.com) was recorded on submission of this form.

Email *
ingaleaakanksha@gmail.com
Name *
Aakanksha ingale
Roll No *
1209
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- () A

- (D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

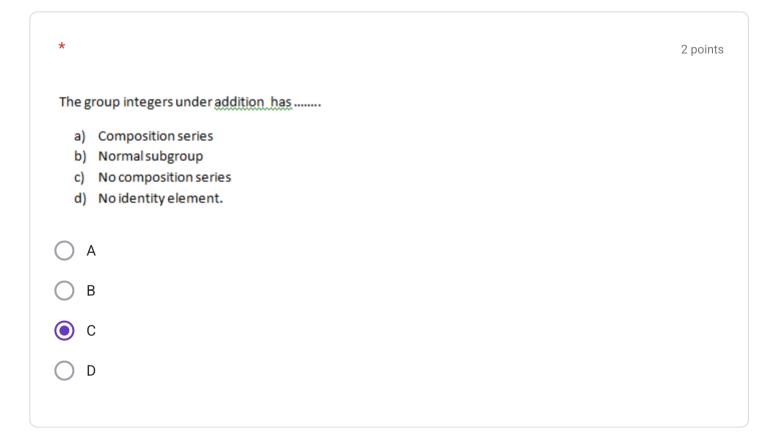
$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- () B
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4	
c) n≥ 5 d) n≥ 6	
O A	

ОВ

C



a) Normalb) Abelianc) Non-abeliand) Simple

D

* Number of elements of order 2 in $S_3 \times Z_4$ is	2 points
 A B C D 	
* The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points
○ A○ B○ C	

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (pruthvirajpatil582@gmail.com) was recorded on submission of this form.

Email * pruthvirajpatil582@gmail.com
Name * Pruthviraj vikas patil
Roll No * 1225
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

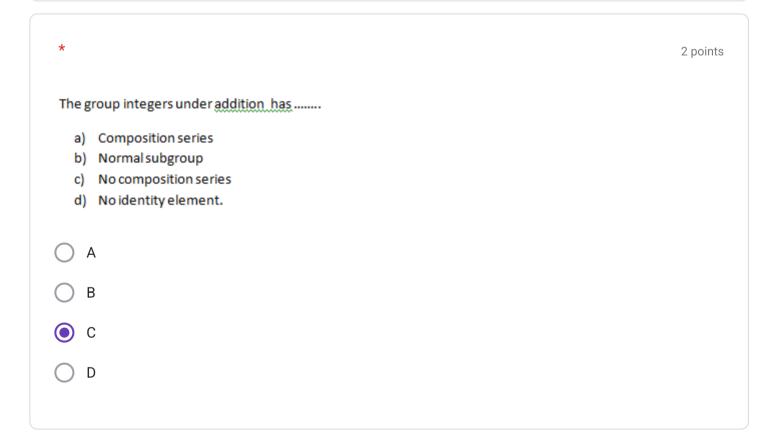
- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- B
- () C
- O D

) D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (mrudulgoliwadekar@gmail.com) was recorded on submission of this form.

Email * mrudulgoliwadekar@gmail.com
Name * Mrudula G. Goliwadekar
Roll No * 1208
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- O D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

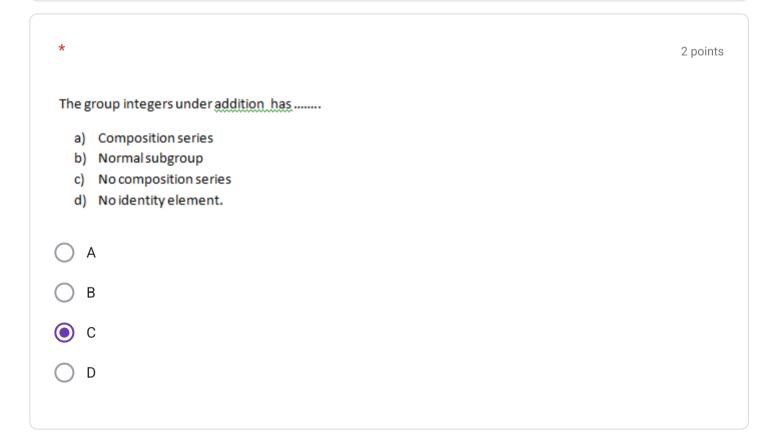
- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K^\prime of any normal subgroup K of a group G is normal subgroup of G	
a) Only (j) true b) Only (ii) true	
c) Both (i) and (ii) true	
d) Both (i) and (ii) tales	
\bigcap Λ	
O A	
В	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4 c) n≥ 5	
d) n≥ 6	
\bigcap Λ	
○ A	

ОВ

C

O D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	
ОВ	

O D

*		2 points
Which	of the following group is simple?	
a) l	\mathcal{O}_3	
	cosahedral group	
c) 5		
(A	Cyclic group of order 15	
B		
O C		
O D		

*		2 points
The number	er of <u>abelian</u> groups of order 15 up to isomorphism is	
a) 1		
b) 2		
c) 3		
d) 4		
A		
В		
O C		
O D		

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (todakarshubhangi3437@gmail.com) was recorded on submission of this form.

Email * todakarshubhangi3437@gmail.com
Name * Shubhangi shivaji todakar
Roll No * 1238
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \left[egin{smallmatrix} a & a \ a \end{smallmatrix} \right] \mid \underbrace{\mathbf{a}}_{\infty} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- E
- \bigcirc C
- () D

) D

*	2 points
The group integers under addition has	
 a) Composition series b) Normal subgroup c) No composition series d) No identity element. 	
○ A	
ОВ	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
○ c	
D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian	
c) Infinite cyclic	
d) Finite cyclic	
○ A	
ОВ	

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (sdpatil204@gmail.com) was recorded on submission of this form.

Email * sdpatil204@gmail.com
Name * Sharad dhanaji patil
Roll No * 1227
Class * M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- () A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- E
- \bigcirc C

) D

* The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A
B
C
C
D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	

ОВ

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (nemishteruturaj@gmail.com) was recorded on submission of this form.

Email * nemishteruturaj@gmail.com		
Name *		
Ruturaj nemishte		
Roll No *		
1221		
Class *		
M.Sc I ▼		
W.Se i		
Questions		
All questions are compulsory.		

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- O
- O D

) D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
O A	
B	
O C	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	

ОВ

C

O D

*		2 points
Whic	n of the following group is simple?	
a)	D_3	
	Icosahedral group	
	S_3	
(A	Cyclic group of order 15	
B		
O C		
OD		

*	2 points
The numb	per of <u>abelian</u> groups of order 15 up to isomorphism is
a) 1	
b) 2	
c) 3	
d) 4	
A	
ОВ	
O C	
O D	

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (manepratibha08@gmail.com) was recorded on submission of this form.

Email * manepratibha08@gmail.com
Name * Pratibha Narayan Mane
Roll No * 1220
Class * M.Sc I
Questions
All guestions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- () D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- O C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- B
- C
- O D

) D

* 2 points

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
○ A	
■ B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial	
b) Non-abelian	

c) Infinite cyclicd) Finite cyclic

ОВ

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (sonalisankpal007@gmail.com) was recorded on submission of this form.

Email * sonalisankpal007@gmail.com
Name * Sonali Sarjerao Sankpal
Roll No * 1233
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- (E
- C
- O D

) D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

*
The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (asmitac9772@gmail.com) was recorded on submission of this form.

Email * asmitac9772@gmail.com
Name * Asmita Adinath Chougule
Roll No * 1205
Class * M.Sc I
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- (E
- O C
- O D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

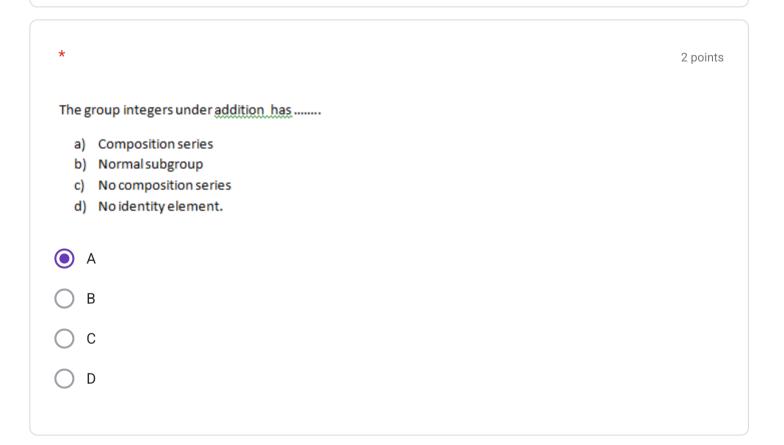
- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- \bigcirc c

) D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	
ОВ	

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (shivani.kolekar.30@gmail.com) was recorded on submission of this form.

Email * shivani.kolekar.30@gmail.com
Name * Kolokar Shiyani Tanaii
Kolekar Shivani Tanaji
Roll No *
1218
Class *
Old St.
M.Sc I ▼
Wilde I
Ougstions
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- (E
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
● C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
 a) n≥ 3 b) n≥ 4 c) n≥ 5 d) n≥ 6 	
○ A	

ОВ

C

O D

*	2 points
The group integers under addition has	
a) Composition series b) Normal subgroup c) No composition series d) No identity element.	
○ A	
ОВ	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (shivaratnajamboni2014@gmail.com) was recorded on submission of this form.

Email * shivaratnajamboni2014@gmail.com
Name * Shivaratna Jamboni
Roll No * 1211
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- C
- O D

) D

* 2 points

The group integers under addition has

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
○ c	
D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian	
c) Infinite cyclic	
d) Finite cyclic	
○ A	
ОВ	

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	
*	2 points

The number of abelian groups of order 15 up to isomorphism is.....

a) 1

b) 2

c) 3

d) 4

 \bigcap \triangle

● F

 \bigcirc C

(D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (mrunali9399@gmali.com) was recorded on submission of this form.

Email * mrunali9399@gmali.com
Name * Mrunali Solapure
Roll No * 1236
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- (E
- O C
- O D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- \bigcirc C
- D

) D

D

*	2 points
The group integers under addition has	
 a) Composition series b) Normal subgroup c) No composition series d) No identity element. 	
A	
ОВ	
○ c	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	

ОВ

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (vidulapatil01999@gmail.com) was recorded on submission of this form.

Email * vidulapatil01999@gmail.com
Name * Vidula Patil
Roll No * 1229
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- () E
- C
- O D

) D

* 2 points

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	
AB	

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A

B

C

C

D

This content is neither created nor endorsed by Google.

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (vedukadam2000@gmail.com) was recorded on submission of this form.

Email * vedukadam2000@gmail.com
Name * Vedika kadam
Roll No * 1212
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- A
- () E
- () D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- B
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K^\prime of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (j) and (ii) tales	
○ A	
ОВ	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4 c) n≥ 5	
d) n≥ 6	

O A

ОВ

C

O D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
○ A	
ОВ	
C	

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (ssbate1999@gmail.com) was recorded on submission of this form.

Email * ssbate1999@gmail.com
Name *
Bate Sonali Shankar
Roll No *
1202
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- (E
- O C
- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- (E
- C
- O D

) D

*

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

If M is maximal normal subgroup of G $\inf_{M} \frac{G}{M}$ is

- a) Normal
- b) Abelian
- c) Non-abelian
- d) Simple
- () A
- () B
- () C
- D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
Ο A	

ОВ

C

O D

*		2 points
Whic	n of the following group is simple?	
a)	D_3	
	Icosahedral group	
	S_3	
(A	Cyclic group of order 15	
B		
O C		
O D		

*				2 points
The number of	abelian groups of orde	r 15 up to isomorp	hism is	
a) 1				
b) 2				
c) 3				
d) 4				
A				
В				
O C				
O D				

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (vipuldeokare24@gmail.com) was recorded on submission of this form.

Email * vipuldeokare24@gmail.com
Name * Vipul Deokare
Roll No * 1206
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- () D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- E
- C
- O D

) D

*

The group integers under addition has......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6	
b) 7 c) 8	
d) 9	
○ A	
ОВ	
○ c	
D	
*	2 points
The fundamental group of circles is	
a) Trivial	
b) Non-abelian c) Infinite cyclic	
d) Finite cyclic	

O A

ОВ

C

O D

*		2 points
Whic	n of the following group is simple?	
a)	D_3	
	Icosahedral group	
	S_3	
d)	Cyclic group of order 15	
B		
O C		
O D		

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A

B

C

D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (kajupatil9122@gmail.com) was recorded on submission of this form.

Email * kajupatil9122@gmail.com
Name * Kajal Amar Patil
Roll No * 1224
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- (E
- O C
- O D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- \bigcirc c

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
● C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
 a) n≥ 3 b) n≥ 4 c) n≥ 5 d) n≥ 6 	
○ A	

ОВ

C

O D

* 2 points

The group integers under addition has.......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

*	2 points
What is the highest order of element in $group S_5$?	
a) 5 b) 6 c) 7 d) 8	
A	
ОВ	
○ c	
O D	
*	2 points
If M is maximal normal subgroup of G $\inf_{M} \frac{C}{M}$ is	
a) Normal	

b) Abelianc) Non-abelian

d) Simple

A

ОВ

O C

O D

*		2 points
Numb	per of elements of order 2 in S_3 x Z_4 is	
	7 8	
_ A		
B		
O 0		
O D		
*		2 points
The fu	indamental group of circles is	
b) c)	Trivial Non-abelian Infinite cyclic Finite cyclic	
O A		

ОВ

C

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (satheankita1087@gmail.com) was recorded on submission of this form.

Email * satheankita1087@gmail.com
Name *
Ankita Mahipati Sathe
Roll No *
ROII INO *
1234
Class *
M.Sc I ▼
Questions
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \left[egin{smallmatrix} a & a \ a \end{smallmatrix} \right] \mid \underbrace{\mathbf{a}}_{\infty} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- E
- \bigcirc C
- \bigcap Γ

) D

*

The group integers under addition has......

a) Composition series
b) Normal subgroup
c) No composition series
d) No identity element.

A

B

C

C

D

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
a) Trivial b) Non-abelian c) Infinite cyclic	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (abhijeetshelake15@gmail.com) was recorded on submission of this form.

Email * abhijeetshelake15@gmail.com
Name *
Abhijeet Bhagavan shelake
Roll No * 1235
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- () D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- O C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

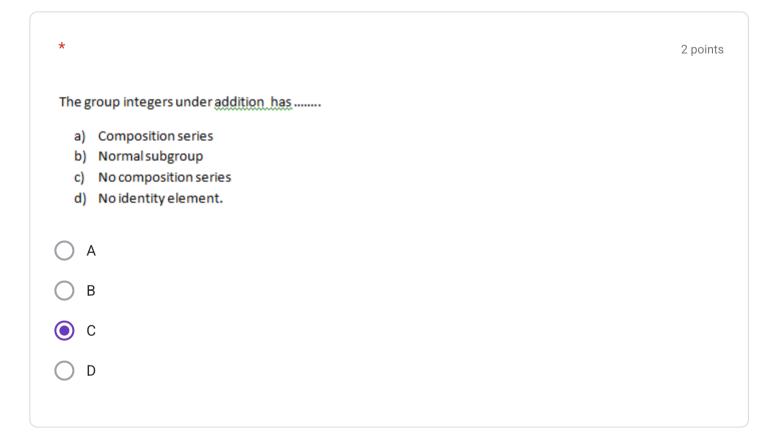
- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4 c) n≥ 5	
d) n≥ 6	

O A

ОВ

C



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 0 b) 7 c) 8 d) 9	
○ A	
ОВ	
○ c	
D	
*	2 points
* The fundamental group of circles is	2 points
The fundamental group of circles is a) Trivial	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points

C

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A

B

C

D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (rutujapatil2000.21@gmail.com) was recorded on submission of this form.

Email * rutujapatil2000.21@gmail.com
Name * Rutuja Tanaji Patil
Roll No * 1226
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \left[egin{smallmatrix} a & a \ a \end{smallmatrix} \right] \mid \underbrace{\mathbf{a}}_{\infty} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- E
- \bigcirc c

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
● C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3 b) n≥ 4 c) n≥ 5 d) n≥ 6	

O A

ОВ

O C

D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial	

b) Non-abelianc) Infinite cyclicd) Finite cyclic

ОВ

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

* 2 points

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (ashjadhav503@gmail.com) was recorded on submission of this form.

Email * ashjadhav503@gmail.com
Name * Ashwini Ashok Jadhav
Roll No * 1210
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- B
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K^\prime of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true	
b) Only (ii) true c) Both (ij) and (ii) true	
d) Both (i) and (ii) tales	
O A	
ОВ	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4 c) n≥ 5	
d) n≥ 6	
O A	

ОВ

C

*	2 points
The group integers under addition has	
 a) Composition series b) Normal subgroup c) No composition series d) No identity element. 	
○ A	
ОВ	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ c	
O D	

* 2 points

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (digvijaykhatkar2017@gmail.com) was recorded on submission of this form.

Email * digvijaykhatkar2017@gmail.com
Name *
Digvijay Ashok Khatkar
Roll No *
1216
Class *
M.Sc I ▼
Questions
All questions are compulsory.

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- O D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{a \in IR}, a \neq 0 \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- (E
- \bigcirc C
- \bigcirc D

) D

*	2 points
The group integers under addition has	
a) Composition series b) Normal subgroup c) No composition series d) No identity element.	
○ A	
○ B	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic	
d) Finite cyclic	
○ A	

ОВ

C

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
○ c	
O D	

* 2 points

The number of abelian groups of order 15 up to isomorphism is.....

- a) 1
- b) 2
- c) 3
- d) 4
- () A
- E
- () C
- D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (poonamregade7821@gmail.com) was recorded on submission of this form.

Email * poonamregade7821@gmail.com
Name * Poonam Regade
Roll No * 1232
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which | G | =343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- O
- (D

* 2 points

Number of generators of cyclic group of order 72 is

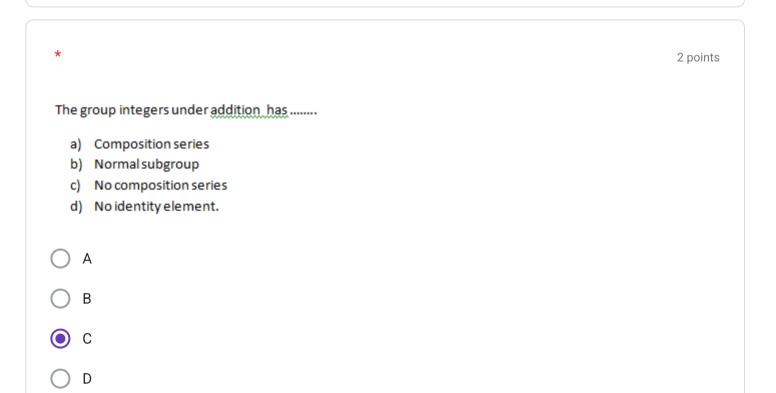
- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- O C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- B
- \bigcirc c

) D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (vp373337@gmail.com) was recorded on submission of this form.

Email * vp373337@gmail.com
Name * Vikas Maruti Patil
Roll No *
1230
Class *
M.Sc I ▼
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- O D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K^\prime of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (j) and (ii) tales	
○ A	
ОВ	
O D	
*	2 points
The group S_n is not solvable for a) $n \ge 3$ b) $n \ge 4$ c) $n \ge 5$ d) $n \ge 6$	

O A

ОВ

C

*	2 points
The group integers under addition has	
 a) Composition series b) Normal subgroup c) No composition series d) No identity element. 	
○ A	
ОВ	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
Ο A	

ОВ

C

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (revatipishte456@gmail.com) was recorded on submission of this form.

Email * revatipishte456@gmail.com
Name * Revati shridhar pishte
Roll No * 1231
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- A

- (D

* 2 points

Number of generators of cyclic group of order 72 is

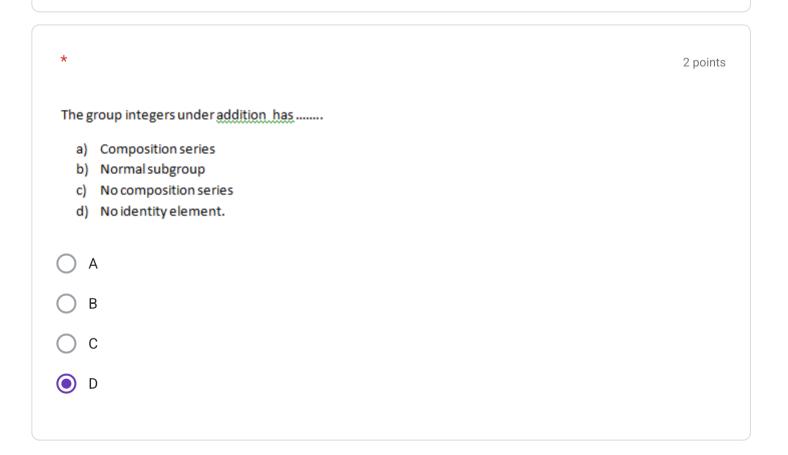
- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- (A
- B
- \bigcirc C

) D



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
a) 6 b) 7 c) 8 d) 9	
○ A	
B	
○ c	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial	

b) Non-abelianc) Infinite cyclicd) Finite cyclic

ОВ

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (sakshibhosale481999@gmail.com) was recorded on submission of this form.

Email * sakshibhosale481999@gmail.com
Name * Sakshi Vijay bhosale
Roll No * 1203
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- (E
- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- () C
- D

The identity element of the multiplicative group

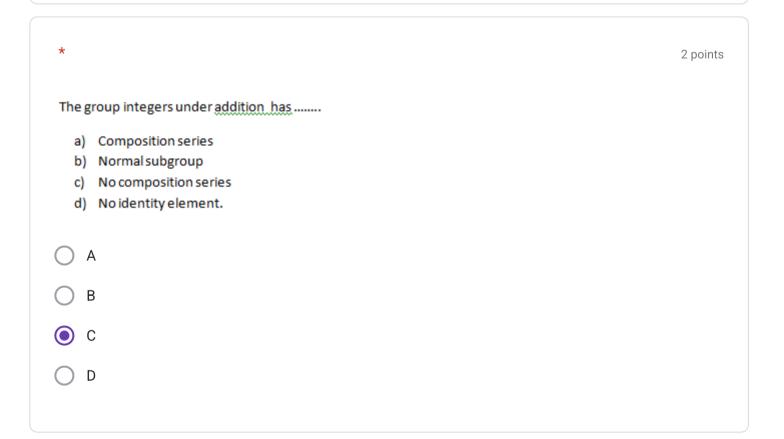
$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- C
- O D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
● C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
 a) n≥ 3 b) n≥ 4 c) n≥ 5 d) n≥ 6 	
○ A	

ОВ

C



a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non- <u>abelian</u> c) Infinite cyclic	
d) Finite cyclic	

ОВ

C

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

* 2 points

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (autadepragati52@gmail.com) was recorded on submission of this form.

Email * autadepragati52@gmail.com
Name *
Pragati prabhakar autade
Roll No *
1201
Class *
Oldos
M.Sc I ▼
Overtions
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A
- () E
- () D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \left[egin{smallmatrix} a & a \ a \end{smallmatrix} \right] \mid \underbrace{\mathbf{a}}_{\infty} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- () E
- \bigcirc C
- \bigcap D

) D

*	2 points
The group integers under addition has	
 a) Composition series b) Normal subgroup c) No composition series d) No identity element. 	
○ A	
ОВ	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	
a) Trivial b) Non-abelian c) Infinite cyclic	
a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
O A	
B	
○ C	
O D	

*

The number of abelian groups of order 15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (rajukamble1822@gmail.com) was recorded on submission of this form.

Email * rajukamble1822@gmail.com
Name * Raju Vinod kamble
Roll No * 1214
Class * M.Sc I ▼
Questions All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

*

2 points

Number of generators of cyclic group of order 72 is

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- () C
- D

The identity element of the multiplicative group

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid \underbrace{\mathbf{a}}_{\bullet} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- B
- \bigcirc C

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K^\prime of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
C	
O D	
*	
^	2 points
The group \mathcal{S}_n is not solvable for	
a) n≥ 3	
b) n≥ 4 c) n≥ 5	
d) n≥ 6	

O A

ОВ

C

O D

Which of the following is possible for the class equation of group G?

- a) 10 = 1+1+1+2+5
- b) 4=1+1+2
- c) 8 = 1+1+3+3
- d) 6=1+2+3
- A
- () B
- \bigcirc \bigcirc
- D

* 2 points

The group integers under addition has

- a) Composition series
- b) Normal subgroup
- c) No composition series
- d) No identity element.
- B
- \bigcirc C
- () [

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in S_3 x Z_4 is	
a) 6 b) 7 c) 8 d) 9	
○ A	
ОВ	
O D	
*	2 points
The fundamental group of circles is	
a) Trivial b) Non-abelian	
c) Infinite cyclic	
d) Finite cyclic	
○ A	
ОВ	

O C

D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ c	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A

B

C

C

D

This content is neither created nor endorsed by Google.

Google Forms

Internal Exam

Sem -1 Sub - Algebra

The respondent's email (satheankita1087@gmail.com) was recorded on submission of this form.

Email *
satheankita1087@gmail.com
Name *
Ankita Mahipati Sathe
Roll No *
1234
Class *
M.Sc I ▼
Questions
Questions
All questions are compulsory.

If G is non abelian group for which |G|=343 and Z is center of G then

- a) |Z|=3
- b) |Z|=1
- c) |Z|=7
- d) |Z|=49
- (A

- (D

* 2 points

 $\underline{\text{Number of generators of cyclic group of order}} \ 7^2 \ \text{is} \$

- a) 62
- b) 23
- c) 42
- d) 49
- () A
- () B
- \bigcirc C
- D

The identity element of the multiplicative group

$$\left\{ \left[egin{smallmatrix} a & a \ a \end{smallmatrix} \right] \mid \underbrace{\mathbf{a}}_{\infty} \in \mathsf{IR}, \ \mathbf{a} \neq \mathbf{0} \right\}$$
 is

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
- d) Not exists
- A
- () E
- \bigcirc c
- D

*	2 points
Consider the statements	
i)Every abelian group is solvable	
ii) The commutator subgroup K' of any normal subgroup K of a group G is normal subgroup of G	
a) Only (i) true b) Only (ii) true c) Both (i) and (ii) true d) Both (i) and (ii) tales	
○ A	
ОВ	
● C	
O D	
*	2 points
The group \mathcal{S}_n is not solvable for	
 a) n≥ 3 b) n≥ 4 c) n≥ 5 d) n≥ 6 	
○ A	

ОВ

C

O D

*	2 points
The group integers under addition has	
 a) Composition series b) Normal subgroup c) No composition series d) No identity element. 	
○ A	
ОВ	
O D	

a) Normalb) Abelianc) Non-abeliand) Simple

D

*	2 points
Number of elements of order 2 in $S_3 \times Z_4$ is	
A	
ОВ	
○ c	
O D	
*	2 points
* The fundamental group of circles is	2 points
	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic	2 points
The fundamental group of circles is a) Trivial b) Non-abelian c) Infinite cyclic d) Finite cyclic	2 points

O D

*	2 points
Which of the following group is simple?	
 a) D₃ b) Icosahedral group c) S₃ d) Cyclic group of order 15 	
○ A	
B	
○ C	
O D	

* 2 points

The number of abelian groups of order15 up to isomorphism is......

a) 1
b) 2
c) 3
d) 4

A
B
C
D

This content is neither created nor endorsed by Google.

Google Forms