Naïve Bayes and Unsupervised Learning

Mr.M. A. Jadhav Department of Computer Studies (MCA) Vivekanand College, Kolhapur

14 July 2025

Agenda

- Naïve Bayes
- 2 Text Pre-processing
- Clustering
- **Dimensionality Reduction**
- 6 Algorithms
- Conclusion

Introduction to Naïve Bayes Classifiers

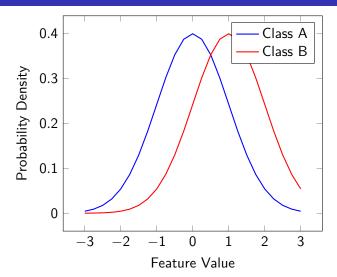
Concept: Probabilistic classifiers based on Bayes' Theorem, assuming feature independence.

Applications:

- Text classification (e.g., spam detection)
- Sentiment analysis

Bayes' Theorem

Foundation:
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$


Conditional Independence Assumption: Features are independent given the class label.

$$P(C|X_1, X_2, \dots, X_n) \propto P(C) \cdot \prod_{i=1}^n P(X_i|C)$$

Types of Naïve Bayes

- Gaussian Naïve Bayes: Assumes continuous features follow a Gaussian distribution
- Multinomial Naïve Bayes: Suitable for discrete data (e.g., word counts in text).
- Bernoulli Naïve Bayes: Designed for binary/boolean data (e.g., presence/absence of words).

Gaussian Naïve Bayes

Continuous data modeled using Gaussian distributions.

Text Pre-processing

Steps for preparing text data:

- **Tokenization:** Splitting text into words or tokens.
- Stop Words: Removing common words (e.g., "the", "is").
- **TF-IDF:** Term Frequency-Inverse Document Frequency for feature extraction.

TF-IDF

Concept: Weights words based on their frequency in a document and rarity across documents.

Formula:

$$\mathsf{TF}\mathsf{-}\mathsf{IDF}(t,d) = \mathsf{TF}(t,d) \cdot \log \left(\frac{\mathsf{N}}{\mathsf{DF}(t)} \right)$$

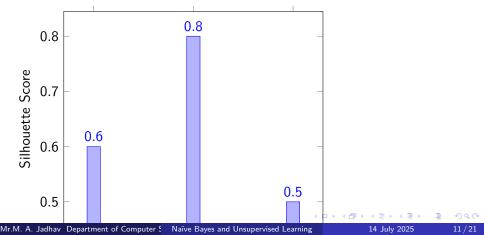
Text Data Tokenization TF-IDF Features

K-Means Clustering

Algorithm Steps:

- 1 Initialize k centroids randomly.
- Assign data points to the nearest centroid.
- Update centroids as the mean of assigned points.
- Repeat until convergence.

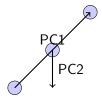
Applications: Customer segmentation, image compression.


K-Means Visualization

Points clustered around centroids (C1, C2).

Clustering Evaluation Metrics

- Inertia: Sum of squared distances from points to their assigned centroid.
- Silhouette Score: Measures how similar points are to their own cluster vs. others ([-1,1]).

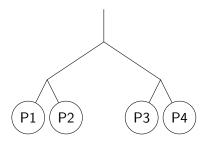

Principal Component Analysis (PCA)

Concept: Projects high-dimensional data onto lower-dimensional space while preserving variance.

Steps:

- Standardize data.
- Compute covariance matrix.
- Find eigenvectors (principal components).
- Project data onto top components.

PCA Visualization


Data projected onto principal components (PC1, PC2).

Hierarchical Clustering

Concept: Builds a hierarchy of clusters, either bottom-up (agglomerative) or top-down (divisive).

Applications: Gene expression analysis, social network analysis.

Hierarchical Clustering Dendrogram

Dendrogram showing hierarchical clustering.

Naïve Bayes Implementation

Implementation (Python):

Gaussian: sklearn.naive bayes. Gaussian NBM ultinomial:

Use Cases: Spam filtering, document classification.

K-Means Implementation

Implementation (Python): sklearn.cluster.KMeans

Key Parameters:

- n_clusters: Number of clusters (k).
- max_iter: Maximum iterations for convergence.

Use Cases: Market segmentation, image clustering.

PCA Implementation

Implementation (Python): sklearn.decomposition.PCA

Key Parameters:

• n_components: Number of principal components.

Use Cases: Data visualization, feature reduction.

Hierarchical Clustering Implementation

Implementation (Python):

sklearn.cluster.AgglomerativeClustering

Key Parameters:

• linkage: Method for merging clusters (e.g., ward, average).

Use Cases: Taxonomy creation, clustering documents.

Conclusion

Naïve Bayes and unsupervised learning techniques like K-Means, PCA, and hierarchical clustering are essential for classification and data analysis.

Text pre-processing and evaluation metrics enhance their effectiveness.

References

- Scikit-learn Documentation: Naïve Bayes and Clustering
- GeeksforGeeks: Unsupervised Learning
- Towards Data Science: PCA and Hierarchical Clustering