Advanced Learning and Ensemble Techniques

Mr. Mehul A. Jadhav Department of Computer Studies (MCA) Vivekanand College, Kolhapur

17 July 2025

Agenda

- Ensemble Learning
- Neural Networks
- 3 Clustering
- 4 Dimensionality Reduction
- Model Evaluation
- 6 Algorithms
- Conclusion

Introduction to Ensemble Learning

Concept: Combines multiple models to improve predictive performance and reduce overfitting.

Types:

- Bagging (e.g., Random Forest)
- Boosting (e.g., AdaBoost, Gradient Boosting)

AdaBoost

Adaptive Boosting: Sequentially trains weak learners, assigning higher weights to misclassified instances.

- Face detection
- Binary classification tasks

Gradient Boosting

Concept: Builds models sequentially, minimizing a loss function (e.g., mean squared error) using gradient descent.

- Ranking systems
- Regression tasks

XGBoost

Extreme Gradient Boosting: Optimized gradient boosting with regularization and parallel processing.

Advantages:

- High performance
- Handles missing data

Perceptron

Concept: Basic neural network unit, computes weighted sum and applies activation function.

Multilayer Perceptron (MLP)

Concept: Deep neural network with multiple layers of neurons.

- Image recognition
- Natural language processing

DBSCAN

Density-Based Spatial Clustering of Applications with Noise:

- Clusters based on density of data points.
- Identifies outliers as noise.

- Anomaly detection
- Spatial data analysis

DBSCAN Visualization

Dense regions form clusters; outliers are noise.

t-SNE

t-Distributed Stochastic Neighbor Embedding:

- Non-linear dimensionality reduction for visualization.
- Preserves local structure of high-dimensional data.

- Visualizing high-dimensional datasets
- Feature embedding

t-SNE Visualization

2D Projection

High-dimensional data projected to 2D space.

Model Evaluation Metrics

- Accuracy: Fraction of correct predictions.
- **Precision:** True positives / (True positives + False positives).
- **Recall:** True positives / (True positives + False negatives).
- **F1-Score:** Harmonic mean of precision and recall.
- **ROC-AUC:** Area under the Receiver Operating Characteristic curve.

ROC Curve

AdaBoost Implementation

Implementation (Python): sklearn.ensemble.AdaBoostClassifier

Key Parameters:

- n_estimators: Number of weak learners.
- learning_rate: Weight adjustment rate.

Use Cases: Classification tasks, boosting weak models.

Gradient Boosting Implementation

Implementation (Python):

 ${\tt sklearn.ensemble.GradientBoostingClassifier}$

Key Parameters:

- n_estimators: Number of boosting stages.
- max_depth: Maximum tree depth.

Use Cases: Predictive modeling, ranking.

DBSCAN Implementation

Implementation (Python): sklearn.cluster.DBSCAN

Key Parameters:

- eps: Maximum distance between points in a cluster.
- min_samples: Minimum points to form a cluster.

Use Cases: Outlier detection, spatial clustering.

Multilayer Perceptron (MLP) Implementation

Implementation (Python): sklearn.neural_network.MLPClassifier

Key Parameters:

- hidden_layer_sizes: Number of neurons in each layer.
- activation: Activation function (e.g., relu).

Use Cases: Image classification, NLP.

t-SNE Implementation

Implementation (Python): sklearn.manifold.TSNE

Key Parameters:

- n_components: Dimensions of the embedded space.
- perplexity: Balance between local and global structure.

Use Cases: Data visualization, feature analysis.

Conclusion

Advanced techniques like ensemble learning, neural networks, DBSCAN, and t-SNE enhance predictive and analytical capabilities.

Model evaluation metrics ensure robust performance assessment.

References

- Scikit-learn Documentation: Ensemble Methods and Clustering
- GeeksforGeeks: Neural Networks and t-SNE
- Towards Data Science: Model Evaluation Metrics