Introduction to Artificial Intelligence and Machine Learning

Mr. Mehul A. Jadhav Department of Computer Studies (MCA) Vivekanand College, Kolhapur

10 July 2025

Agenda

- Definition and Scope
- 2 Types of Machine Learning
- Applications of Al
- 4 Key Concepts in ML
- 5 Steps to Build a Machine Learning Model
- 6 Algorithms
- Conclusion

What is Artificial Intelligence (AI)?

Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, including learning, reasoning, and problem-solving.

Scope of AI:

- Automating repetitive tasks
- Enhancing decision-making
- Enabling intelligent systems (e.g., virtual assistants)

What is Machine Learning (ML)?

Machine Learning (ML) is a subset of AI that enables systems to learn from data and improve without being explicitly programmed.

Significance of ML:

- Predictive analytics
- Pattern recognition
- Personalization (e.g., recommendation systems)

Al and ML in Modern Technology

e.g., Expert Systems

Supervised Learning

Concept: Models are trained on labeled data to predict outcomes.

Examples:

- Email spam detection
- Image classification (e.g., cat vs. dog)

Unsupervised Learning

Concept: Models find patterns in unlabeled data.

Examples:

- Customer segmentation
- Anomaly detection

Reinforcement Learning

Concept: Agents learn by interacting with an environment, maximizing rewards.

Examples:

- Game playing (e.g., AlphaGo)
- Robotics

Comparison of ML Types

Real-World Applications of AI

Al is transforming various domains:

- Healthcare: Disease diagnosis, medical imaging analysis
- Finance: Fraud detection, algorithmic trading
- Autonomous Vehicles: Self-driving cars, navigation systems
- Others: Virtual assistants, recommendation systems

Al Application Domains

Key Concepts in Machine Learning

- **Features:** Attributes or variables used as input to ML models (e.g., pixel values in images).
- Labels: Target output in supervised learning (e.g., "spam" or "not spam").
- Model: Mathematical representation that maps inputs to outputs.

Training and Testing

- Training: Process of feeding data to a model to learn patterns.
- **Testing:** Evaluating model performance on unseen data.

Overfitting, Underfitting, and Generalization

- Overfitting: Model learns training data too well, fails on new data.
- Underfitting: Model fails to learn patterns in training data.
- Generalization: Ability of a model to perform well on unseen data.

Steps to Build an ML Model

- **1** Data Collection: Gather relevant data for the problem.
- Pre-processing: Clean and prepare data (e.g., handle missing values).
- Model Building: Select and train a model.
- Evaluation: Assess model performance (e.g., accuracy, precision).
- **5 Deployment:** Implement the model in a real-world environment.

ML Pipeline

Linear Regression

Introduction: Predicts continuous output using a linear relationship.

Application: House price prediction, sales forecasting.

Logistic Regression

Introduction: Predicts categorical outcomes (e.g., binary classification).

Application: Spam detection, disease prediction.

Perceptron

Introduction: Basic building block of neural networks, models linear decision boundaries.

Application: Simple binary classification tasks.

Conclusion

Al and ML are pivotal in modern technology, enabling intelligent systems across domains.

Understanding ML types, concepts, and algorithms is crucial for building effective models.

References

- GeeksforGeeks: Introduction to Machine Learning
- Coursera: Machine Learning by Andrew Ng
- Towards Data Science: Al and ML Applications