Supervised Learning Algorithms

Mr. Mehul A. Jadhav Department of Computer Studies (MCA) Vivekanand College, Kolhapur

12 July 2025

Agenda

- Classification and Regression Tasks
- 2 k-Nearest Neighbours (k-NN)
- 3 Decision Trees
- Random Forest
- 5 Support Vector Machines (SVM)
- 6 Model Persistence
- Data Scaling and Normalization
- 8 Algorithms
- Onclusion

Classification Tasks

Definition: Predicting discrete labels (categories).

Examples:

- Spam vs. non-spam email detection
- Image classification (e.g., cat vs. dog)

Regression Tasks

Definition: Predicting continuous values.

Examples:

- House price prediction
- Temperature forecasting

ロ ト 4 個 ト 4 夏 ト 4 夏 ト 夏 夕 Q ()

k-Nearest Neighbours (k-NN)

Concept: Classifies data points based on the majority class of their k-nearest neighbors using distance metrics (e.g., Euclidean distance).

Applications:

- Handwritten digit recognition
- Recommendation systems

k-NN Working Mechanism

$$k = 3$$

The new point is classified as Class A (2 blue, 1 red within radius).

Introduction to Decision Trees

Concept: A tree-like model where decisions are made based on feature conditions.

Applications:

- Credit risk assessment
- Medical diagnosis

Decision Tree Structure

ID3 Algorithm

Concept: Uses entropy and information gain to select the best feature for splitting.

Entropy:
$$H(S) = -\sum p_i \log_2(p_i)$$

Information Gain:
$$IG(A) = H(S) - \sum \frac{|S_v|}{|S|} H(S_v)$$

CART Algorithm

Concept: Uses Gini index for splitting in classification tasks.

Gini Index:
$$Gini = 1 - \sum (p_i)^2$$

Lower Gini index indicates better split.

Random Forest and Ensemble Learning

Concept: Combines multiple decision trees to improve accuracy and reduce overfitting.

Bagging: Bootstrap aggregating creates diverse subsets of data for each tree.

Applications:

- Fraud detection
- Stock market prediction

Random Forest Structure

Random Forest Performance

Introduction to SVM

Concept: Finds the optimal hyperplane that maximizes the margin between classes.

Applications:

- Text classification
- Face recognition

SVM Hyperplane and Margin

Model Persistence

Saving Models: Store trained models for future use.

Loading Models: Reuse pre-trained models for predictions.

Example (Python):

- Save: joblib.dump(model, 'model.pkl')
- Load: model = joblib.load('model.pkl')

Importance of Data Scaling

Concept: Ensures features contribute equally to the model.

Techniques:

- Min-Max Scaling: Scales features to a range (e.g., [0,1]).
- Standardization: Centers data with mean 0 and variance 1.

Effect of Scaling

k-NN Implementation

Implementation (Python):

- Use sklearn.neighbors.KNeighborsClassifier
- Key parameters: n_neighbors, metric

Use Cases: Image recognition, recommender systems.

Decision Tree Implementation

ID3: Entropy-based, suitable for categorical data.

CART: Uses Gini index, supports regression and classification.

Implementation (Python): sklearn.tree.DecisionTreeClassifier

Random Forest Implementation

Building: Combine multiple trees using bagging.

Tuning Parameters:

- n_estimators: Number of trees
- max_depth: Maximum tree depth

Implementation (Python):

sklearn.ensemble.RandomForestClassifier

SVM Implementation

Practical Applications:

- Text classification (e.g., sentiment analysis)
- Bioinformatics

Implementation (Python): sklearn.svm.SVC

Conclusion

Supervised learning algorithms like k-NN, Decision Trees, Random Forests, and SVMs are powerful tools for classification and regression tasks.

Proper data scaling and model persistence enhance their practical utility.

References

- Scikit-learn Documentation: Supervised Learning
- GeeksforGeeks: Machine Learning Algorithms
- Towards Data Science: Understanding SVM