Notice

Date: Thursday, 06/04/2023
II is lierely informed to the students of M.Sc. -1 and II, that Second Term Internal Evaluation Examination is scheduled between $20^{\text {th }} 1021^{18}$ April 2023 in the Department of Physics.

Instructions:

1) Nature of question paper for M. So - I: 05 MCQ's (05 Marks), 01 Short Answer Questions (05 Marks), 01 Long Answer Questons (10 Marks)
2) Nature of question paper for M. So - $=$ II: 05 MCQ's (0.5 Marks), 01 Short Answer Questions (05 Marks), 01 Long Answer Questions (10 Marks)
3) Students should prosent before 15 minutes of the examination.
4) Answer shoets will be provided by the Department.
5) Strietly mention the Full Name and Roll number on Answer Sheet correctly.
6) All students should remain present for the Internal Examination as the examination will not be conducted afterwords in any case.

Sr. No.	Date	Class	Name of the Paper	Time
01	$20 / 04 / 2023$	M. Sc. - I	Quantum mechanics- II	$11-12 \mathrm{AM}$
			Statistical mechanics	$12-01$ PM
02	$20 / 04 / 2023$	M. Sc. - II	Experimental techniques	$11-12 \mathrm{AM}$
			Electronic devices and applications	$12-01$ PM
03	$21 / 04 / 2023$	M. Sc. - I	Electrodynamics	$11-12 \mathrm{AM}$
			Atomic and Molecular Physics	$12-01$ PM
04	$21 / 04 / 2023$	M. Sc. - II	Solid State Physics- III	$11-12 \mathrm{AM}$
			Solid State Physics- IV	$12-01$ PM

"Education for Knowledge, Science and Culture"
-Shikshanmaharshi Dr. Bapuji Salunkhe
Shri Swami Vivekanand Shikshan Sanstha, Kolhapur

Vivekanand College, Kolhapur (Autonomous)
 Department of Physics

M.Sc. Part-I SEM II Internal Examination (2022-23)

Quantum Mechanics II
Time :- $3.00 \mathrm{pm}-4.00 \mathrm{pm}$

Instructions:-

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of \log table and calculator is allowed.

Q.1. Choose correct alternative

1. In case of Born approximation validity condition is \qquad
a) $|\Psi s c| \gg 1$
b) $|\Psi s c| \ll 1$
c) $|\Psi s c| \neq 1$
d) $|\Psi s c|=1$
2. For resonance scattering K_{1} a must be $\ldots .$. . multiple of scattering cross section
a)even
b) irrational
c) odd
d) rational
3. According to Optical theorem total scattering cross section is \qquad times the imaginary part of scattering amplitude
a) $\frac{4 \pi}{k}$
b) $4 \pi k$
c) $\frac{4 k}{\pi}$
d) $\frac{\pi}{4 k}$
4. In case of scattering of identical particles the value of quantum scattering cross section is the classical scattering cross section
a) half
b) thrice
c) same
d) double
5. The relation between scattering cross amplitude and cross section is
a) $\sigma=|f(\theta)|$
b) $\sigma^{2}=|f(\theta)|$
c) $\sigma=|f(\theta)|^{2}$
d) $\sigma=\frac{1}{|f(\theta)|}$

Q. 2 Attempt any one

1. Explain born approximation and its validity condition.
2. With a free particle solution explain partial wave expansion of plane wave into spherical wave.

Q. 3 Attempt any one.

1. Explain resonance scattering for low energy case.
2. Write a note on Eikonal equation.
"Hevenincation of I Aiwation for Knowiedige somence and Culture"

Vivekanand Collige (Autonomous) Kolhapur

 Ongan!ment of Physicsus. 1 Internal F xamination, April-2023
Attendance Sheet
Dave Tuantuen Mechatica-II

Putt As.	Arme or Candidate	Sign
1331	Phimaie Soethal Jitin	2
1332	Bralar Anand Kagappa	$x \cos +x$
1333	Jakoli Smith Kallappa	Bojorain ars
1334	Kasatagi Shivaj C.	Ridive
1335	Mithari Stureta Sardar	Nishas
1336	Pandive Raghree Mahesh	pajdive.
1337	Sagar Shivani Datiatyay	guper
1338	Chuhan Aditis.	4 Chautan
1339	Shirke Pranali Pradip	Tetheicke
134)	Shirodkar Shubham R	SRShiratker
1341	Todkar Domyaneshwari Pandit	Todkay

VIVEKANAND COLLEGE, KOLLAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No.: Internal
Roll No.
Class \square

$$
1342
$$

Signature
of
of
Supervisor
Subject: Quantum TAechanics - II
Test / Tutorial No. :
Div. :

QI
i) Weidmann - Franz law
ii) $\frac{n e^{2} z}{m}$
iii) $\left(\frac{\partial f}{\partial t}\right)_{\text {collision }}=0$

$$
1
$$

v) $n v / 6$

Q2. Energy shift are analyzed within the pramewor of perturbation theory in quantum mechanics. When a system is subjected to a perturbing potential, the energy levels of the unperturbed system are shifted. In fist order energy shift perturbation theory, DE for a given state is properiinal to the matrix element of the perturbing potential (k)
"Education for Knowledge, Science and Culture"
-Shikshanmaharshi Dr. Bapuji Salunkhe
Shri Swami Vivekanand Shikshan Sanstha, Kolhapur
Vivekanand College, Kolhapur (Autonomous) Department of Physics
M.Sc. Part-I SEM II Internal Examination (2022-23)

Statistical Mechanics
Time : $3.30 \mathrm{pm}-4.30 \mathrm{pm}$
Total Marks: 20

Instructions:-

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of \log table and calculator is allowed.

Q1: Choose the correct alternative.

1. Entropy per system is \qquad
a) Always negative
b) Always positive
c) Always infinite
d) Always zero
2. Which of the following is classical statistics.
a) MB statistics
b) BE statistics
c) FD statistics
d) All of these
3.Fermi -Dirac statistics is applicable to the
a) electrons
b) photons
c) molecules
d) atoms
4.When a metal is heated, which electrons are excited to the higher energy states?
a) Electrons in the filled shells
b) All the electrons in an atom
c) Electrons near the Fermi level
d) Electrons very above the Fermi
5.The particles obeying BE statistics are called as. \qquad
a) fermions
b) bosons
c) photons
d) molecules

Q2: Attempt any ONE.

1. Consider a system M of N non-interacting spin $1 / 2$ particles placed in uniform magnetic field H . The particle can have only 4 possible orientation $\theta=\left(0^{\circ}, 120^{\circ}, 240^{\circ}\right)$
Find a)Entropy
b)Magnetization M
2. What is ensemble? Derive the partition function for the canonical ensemble.

Show that entropy per system is always positive.

Q3: Attempt any ONE.

1. Consider a 1D chain consisting of small n segment. F is load or force applied on the chain. Let the length of each segment is ' a ' if it is parallel to the chain and ' 0 ' if it is perpendicular to the chain find the partition function and also find the average length.
2. Find the mean value of potential energy if $U(x)=\frac{1}{2} k r^{2}$

Vivekanand College (Autonomous) Kolhapur
Deparmment of Physics
M.So. I Intermal I Camination, Aprit 2023

Attendance Sheet
Dats: Staristical Mochanies
Times $12,00.1,00 \mathrm{p.m}$.

Roll. No.	Name of Candidate	Sign
1331	Ahivale Snchal Nition	id
1332	Biradar Anand Nigrippa	Arsind pot
1333	Jarkoli Smith Kallappa	- $\sqrt{\text { anct }}$
13,34	Kavatagi Shirail C.	SHata aj
1335	Mithari Shwera Sandar	Milluer
1336	Randive Rajishree Mahesh	Perdive
1337	Sagar Shivani Datartyay	- Sxownis
1338	Chuhan Aditi S.	Ahaution
1339	Shirke Pranali Pradip	BSMirke
1340	Shirodkar Shubham R.	sprrivedike
1341	Todkar Dryanceshwari Pandit	Trisdka

विवेकानंद कॉलेज (स्वायत्त) कोल्हापूर.
परीकेषया
या विषयाध्या प्रयोग परीक्षा

पीमिय
$\therefore 093+$
Signature of Jr. Super.

Pere Examination in
 2022-23

(Candrate's Seat No.) 1349

विभाग
(Section)

c.

INSTRUCTIONS TO CANDIDATES

1. React the question carefully and perform the experiment as required.
2. It here se anything the apparatus that you do not know, ask the examiner or the laboratory assistant to help you,
3. Before cong any electrical expenment, is obsolutely essential that you make a neat working sketch of all apparatus charity grovises and of the necessary connection, and obtain the examiner's permission to proceed.
4. Express al s observations in a tabular form.
th is ese owsratie that in intermediate calculations and results should be entered as neatly and clearly as possible
5 No numenca flours should be written over either in the preliminary or final observations. If any figure is shought to te siscardec it should be run trough and the desired figure written near ta it.
6 . Please see that your table is in good order before you leave the laboratory.

- *.	4	Antisyonnscicic
No		
5	$S R$	
2		

$Q=$
(1) In Ensenbic is a group of gyicius tha Lis micuescopicaliy difezent but bockers -celly the same.
© The macroscopic stele colled bo (E,V,A) encegy, volume and porticle number Tha oricocsiopic siate could he the poistio ort momentim of all 6×10^{23} moleuris]

The encomble conclpanding to our chaica of moluoscopic stato $(E, v(i)$ is arliet inievaranunical Ensemble. This inciutie. all niernarapic stule that ase conpaitele ioill (E, V, N)

The faranical parbletion function Zal is

$$
\begin{aligned}
& Z_{11}=\int \frac{d^{3 N} \gamma \lambda^{3 N}}{h^{3 N}} 11!e^{-p /(p \cdot p)} \\
& x=\sum_{1} e^{\beta E_{i}}
\end{aligned}
$$

Z. 15 partioion function

$$
\begin{aligned}
& U=\frac{1}{2} k r^{2} \\
& \langle U\rangle=\frac{1}{2}=\frac{1}{2} k r_{i}^{2} c \beta E_{i}
\end{aligned}
$$

If you have a specific system or potential energy - Function, you would need to knew the enctigy levels E_{i} and the corresponding values of ri fer each state.
"Education for Knowledge, Science and Culture"
-Shikshanmaharshi Dr. Bapuji Salunkhe
Shri Swami Vivekanand Shikshan Sanstha, Kolhapur

Vivekanand College, Kolhapur (Autonomous) Department of Physics

M.Sc. Part-I SEM II Internal Examination (2022-23)

Electrodynamics
Total Marks:20
Instructions:-

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of \log table and calculator is allowed.

Q. 1) Choose the correct alternative and rewrite

5 marks
i) Addition of four vectors $C^{\mu}=(A+B)^{\mu}=\ldots$.
a) $A^{\mu}+B$
b) $A+B^{\mu}$
c) $\mathrm{A}^{\mu}+\mathrm{B}^{\mu}$
d) $\mathrm{A}^{\mu}-\mathrm{B}^{\mu}$
ii) Scalar product of four vectors is invariant under the condition of $\sum_{\mu,=0}^{3} g_{\mu \mathrm{P}} A^{\mu} B^{\mathrm{P}}=$
a) $\bar{g}_{A} A^{\prime} \mu B$
b) $\sum_{\mu, \mathrm{P}=0}^{3}=A^{\prime} \mu B^{\prime} \mathrm{P}$
c) $\sum_{\mu, \mathrm{P}=0}^{3}=\varnothing(A B)^{\mu}$
d) $\sum_{\mu, \mathrm{P}=0}^{3} g_{\mu \mathrm{P}} A^{\prime} \mu_{B^{\prime} \mathrm{P}}$
iii) Four operator $\frac{\partial}{\partial x^{\digamma \mu}}=\sum_{\gamma} \frac{\partial x^{\mathrm{P}}}{\partial x^{F \mu}}$
a) $\frac{\partial}{\partial x}$
b) $\frac{\partial}{\partial x^{\mathrm{P}}}$
c) $\frac{\partial}{\partial x^{\mu}}$
d) All of the above
iv) $\quad 4(D)$ del operator $\square=\cdots$
a) $\frac{1}{c^{2}} \frac{\partial}{\partial t^{2}}-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$
b) $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$
c) $\frac{1}{c^{2}} \frac{\partial}{\partial t^{2}}-\nabla$
d) $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{1}{c^{2}} \frac{\partial}{\partial t^{2}}$
v) Lorentz transformation of position vector
a) $x^{\prime}=\frac{x+P t}{\sqrt{1-\beta^{2}}}$
b) $x^{\prime}=\frac{x-P t}{\sqrt{1-\beta^{2}}}$
c) $x^{\prime}=\frac{x+P t}{\sqrt{1+\beta^{2}}}$
d) $x^{\prime}=\frac{x-P t}{\sqrt{1+\beta^{2}}}$

Q.2. Attempt the following (Any One)

5 marks
i) Obtain Lorentz transformations of the components of position four vectors.
ii) Derive relation for four potential or relativistic potential.

Q.3. Attempt the following

10 marks
i) Derive Expression for E.M. field tensor and also covariant from of Maxwell's equations.

विवेकानंद कॉलेज (स्वायत्त) कोल्हापूर.

9. प्रश्न काजर्नूर्दब वाचा अणि त्याप्रमाणे विचारलेला प्रयोग करा.
२. उपकरणं च्या दापराबाबत तुन्हांला काही माहीत नसेल तर परीक्षक किंवा प्रयोगशाळा सहाय्यक यांना तुम्हाला मदत करण्याविषयी विनंती करा.
3. कोनतही दिदुत क्र्योग करण्दापूर्बी, प्रत्यक्ष पुरदिलेली सर्व उपकरणे आणि सर्व 'कनेक्शन' नीट पाहून घेऊन संबंधित कामाची नीटनेटकी कार्ययोजना करण्याची नितांत उद्रश्यकता ऊंे अजि ह्रा नंतर, पुढे काम चालू करण्याविषयी परीक्षकांची परवानगी मिळविणे आवश्यक आहे.
8. सर्द निर्क्षणे कोष्कवजा तक्त्यात भरादी. मधल्या सर्व गणना आणि निर्णय हे शक्य तितक्या सुवाच्चपणे आणि स्पष्टपणे नोंदविलेले असणे हे हितावह आहे.
4. प्रतंभिक किंदा अंतिम निरीक्षणात संख्यावाचक आकडे एकावर एक लिहू नयेत. जर लिहिलेला कोणताही आकडा नको असेल तर त्यावर एक रेघ ओढून पाहिजे असलेला अकडा त्याच्याजदळ लिहा.
ह. फ्रयोगशाकेतून बाहेर पडज्यापूर्वी आपले टेबल चांगल्या स्थितीत आहे याची खात्री करा.
INSTRUCTIONS TO CANDIDATES

1. Read the question carefully and perform the experiment as required.
2. If there be anything the apparatus that you do not know, ask the examiner or the laboratory assistant to help you,
3. Before doing any electrical experiment, it is obsolutely essential that you make a neat working sketch of all apparatus actually provided and of the necessary connection, and obtain the examiner's permission to proceed.
4. Express ali observations in a tabular form.

It is aiso desirable that all intermediate calculations and results should be entered as neatly and clearly as possible
5. No numerical figures should be written over either in the preliminary or final observations. If any figure is shought to be discarded it should be run through and the desired figure written near to it.
6. Piease see that your table is in good order before you leave the laboratory.
(येथून लेखनास सुरवात करा.) (Begin writing here.)

v) $x^{\prime}=\frac{x+6 t}{\sqrt{1+p^{2}}}$

Q2-1)

$$
\begin{aligned}
& \bar{\nabla} \cdot \bar{A}+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t} \Rightarrow \\
& \bar{\nabla} \cdot \bar{A}+\frac{i}{i c c} \frac{\partial \phi}{\partial t}=0 \\
& \bar{\nabla} \cdot \bar{A}+\frac{\partial(i \phi / C)}{\partial(i(t)}=0 \\
& \text { kut, } \nabla=\left(i \sigma_{x_{1}}+j / \alpha_{x_{2}}+n d / \alpha_{w_{3}}\right) \\
& \left(\hat{1} / \partial_{x_{1}}+\hat{j} \partial / \partial x_{2}+\hat{k} \frac{\partial}{\partial z_{3}}\right)\left(A_{1}{ }^{\prime}+A_{2} \hat{j}+A_{i} \bar{k}\right)+\frac{\partial A_{y}}{\partial x_{y}}=0 \text {. } \\
& \frac{\partial A_{1}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{2}}+\frac{\partial A_{2}}{\partial x_{3}}-c \\
& \frac{\partial A r}{\partial x_{\mu}}=0 \\
& \text { D. } A_{\mu}=0
\end{aligned}
$$

| Section | Q. No. | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | प्र. क. | 3 |
| :--- | :--- |

| Q. No. | i) |
| :--- | :--- | :--- |

$$
\begin{aligned}
& F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} \\
& A^{\mu}=\left(\begin{array}{ll}
A^{0} & A
\end{array}\right) \\
& \bar{B}=\bar{\nabla} \times \bar{A} \\
& E=-\nabla \varphi-\frac{\partial \vec{A}}{\partial t} \\
& \left.F^{(\nu)}=\left\lvert\, \begin{array}{llll}
F^{00} & F^{01} & F^{02} & F^{03} \\
F^{10} & F^{11} & F^{12} & F^{13} \\
F^{20} & F^{21} & F^{22} & F^{23} \\
F^{30} & F^{31} & F^{32} & F^{32}
\end{array}\right.\right) \\
& \bar{E}=\bar{I}_{1}-\nabla \phi-\frac{\partial \vec{A}}{\partial t} . \\
& =\frac{-\partial \varphi}{\partial x_{1}}-\frac{\partial \phi}{\partial x_{2}}-\frac{\partial \varphi}{\partial y_{3}}-\frac{\partial A_{1}}{\partial t}-\frac{\partial A_{2}}{\partial t}-\frac{\partial A_{3}}{\partial t} \\
& F^{\mu \nu}=\partial^{\mu} A^{0}-\partial^{2} A^{\mu} \\
& =\partial^{2} A^{\prime}-\partial^{\prime} A^{\prime} \\
& =\frac{\partial A^{1}}{\partial x^{0}}-\frac{\partial A^{0}}{\partial x^{1}} \\
& =\frac{\partial A^{\prime}}{\partial(c t)}-\frac{\partial(\overline{\phi / C)}}{\partial x^{\prime}}
\end{aligned}
$$

Seetion	Q. No												
Maks													

U. an $_{\text {No }} \quad F^{01}=\frac{1}{c}\left(\frac{\partial A 1}{\partial t}-\frac{\partial d}{\partial x^{\prime}}\right)$

$$
\begin{aligned}
\left(I_{1}, F_{2}, F_{3}\right)= & -\left(\frac{\partial d}{\partial x^{1}}+\frac{\partial A^{\prime}}{\partial t}\right)\left(\frac{\partial d}{\partial x^{2}}+\frac{\partial A^{2}}{\partial t}\right) \\
& -\left(\frac{\partial d}{\partial x^{3}}+\frac{\partial A^{3}}{\partial t}\right) \\
\bar{B}= & \bar{\nabla} \times \bar{A} \\
= & \left(\begin{array}{ccc}
1 & j & K \\
\partial_{1} & \partial_{2} & \partial_{3} \\
A_{1} & A^{2} & A^{3}
\end{array}\right)
\end{aligned}
$$

$$
\bar{B}=\left(\partial_{2} A^{3}-\partial_{3} A^{2}\right)+\left(\partial_{1} A^{3}-\partial_{3} A^{1}\right)+
$$

(DAA- $\left.A_{2} A^{\prime}\right)$

$$
\begin{gathered}
\left.\left(-B_{1},-B_{2},-B_{3}\right)=\left(\partial^{2} A^{3}-\partial^{3} A^{2}\right),\left(\partial^{3} A^{1}-\partial^{\prime} A^{3}\right), \partial^{\prime} A^{2}-\partial^{2} A^{\prime}\right) \\
F^{\prime 2}=\left(\begin{array}{cccc}
0 & -E^{\prime} / C & -E^{3} / c & -E^{3} / C \\
E^{\prime} / C & 0 & -B^{3} & B^{2} \\
E^{3} / C & B^{3} & 0 & -B^{1} \\
E^{3} / C & -B^{2} & B^{\prime} & 0
\end{array}\right)
\end{gathered}
$$

विविकानंद कॉलेज (स्वारता) कोल्हापूर.

9. प्रश्न काबजीपूर्वक वाचा आणि त्याप्रमाणे विचारलेला प्रयोग करा.
२. उपकरणांच्या वापराबाबत तुम्हांला काही माहीत नरोल तर परीक्षक किंवा प्रयोगशाळा रहाप्यक यांना तुम्हाला मदत करण्याविषयी विनंती करा.
3. कोणताही विद्युतप्र्योग करण्यापूर्वी, प्रत्वक्ष पुरविलेली सर्व उपकरणे अणि सर्व 'कनेक्शन' नीट पाहून घेऊन संबंधित कामाची नीटनेटकी कार्ययोजना करण्यायी नितांत आवश्यकता आहे अणि हा नंतर, पुटे काम चालू करण्याविषयी परीक्षकांची परवानगी मिळविणे आवश्यक आहे.
8. सर्द निरीक्षणे कोषकवजा तक्य्यात भरादी. मुल्या सर्व गणना आणि निर्णय हे शक्य तितक्या खुवाध्चपणे आणि स्पध्पणे नोंदविलेले अराणे हे हितावह आहे.
4. प्रारंभिक किंवा अंतिम निरिक्षणात संख्यावाचक आकडे एकावर एक लिहू नयेत. जर लिहिलेला कोणताही आकडा नको अरेल तर त्यावर एक रेच ओटून पाहिजे असलेला आकडा त्याच्याजवळ लिहा.
६. प्रयोगशाकेतुन बाहेर पडण्यापूर्दी आपले टेबल चांगल्या स्थितीत आहे याची खात्री करा.

INSTRUCTIONS TO CANDIDATES

1. Read the question carefully and perform the experiment as required.
2. If there be anything the apparatus that you do not know, ask the examiner or the laboratory assistant to help you,
3. Before doing any electrical experiment, it is obsolutely essential that you make a neat working sketch of all apparatus actually provided and of the necessary connection, and obtain the examiner's permission to proceed.
4. Express ail observations in a tabular form.

It is also desirable that all intermediate calculations and results should be entered as neatly and clearly as possible
5. No numerical figures should be written over either in the preliminary or final observations. If any figure is shought to be discarded it should be run through and the desired figure written near to it:
6. Please see that your table is in good order before you leave the laboratory.
(येथून लेखनास सुरवात करा.) (Begin writing here.)

Section	Q. No.									
	Marks									

\dagger

$$
\begin{array}{l|l|l}
\hline \hline \text { प्रक्ष } & \text {; }\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{1}{c^{2}} \partial^{2} \\
\hline \text { Q. तथ } & \\
\hline
\end{array}
$$

Q2
i) We have Lasentr equation,

$$
\begin{aligned}
& \nabla \cdot \bar{A}+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}=0 . \\
& \nabla \cdot A+\frac{i}{i c c} \frac{\partial \phi}{\partial t}=0 . \\
& \nabla \cdot \bar{A}+\frac{\partial(i \phi(c)}{\partial(i(t)}=0 \\
& \nabla=\left(i \partial / \partial x_{1}+\hat{j} \partial / \partial x_{2}+\hat{k}^{2} \partial x_{3}\right)
\end{aligned}
$$

Above eq's beoques,

$$
\begin{aligned}
& \left(\frac{\left.x_{1} \partial \partial_{\mu_{1}}+\hat{j} \mu_{y_{2}}+\hat{k} \partial \partial_{x_{3}}\right)\left(A_{1} \hat{i}+A_{0} \hat{j}+A_{3} \hat{k}\right)+\partial A_{y}}{\partial x_{y}}=0\right. \\
& \frac{\partial A_{1}+\frac{\partial A_{2}}{\partial x_{2}}+\frac{\partial A_{3}}{\partial x_{3}}=0}{\partial} \\
& \frac{\partial A_{1}}{\partial \mu_{\mu}}=0 \\
& \Delta: A_{\mu}=0
\end{aligned}
$$

Section	Q. No.												

| प्र.क. | $=\frac{\partial A^{\prime}}{\partial(c t)}-\frac{\partial(\phi / C)}{\partial x^{\prime}}$ |
| :--- | :--- | :--- |
| Q. .о. | |

$$
\begin{aligned}
& F^{01}=\frac{1}{c}\left(\frac{\partial A I}{\partial t}-\frac{\partial \phi^{\prime}}{\partial x^{\prime}}\right) \\
& \left(2 E_{1} E_{2}, E_{3}\right)=-\left(\frac{\partial \phi}{\partial x^{1}}+\frac{\partial A I}{\partial t}\right)-\left(\frac{\partial \phi}{\partial x^{2}}, \frac{\partial A^{2}}{\partial t}\right)- \\
& \left(\frac{\partial \phi}{\partial x^{3}}+\frac{\partial A}{\partial t}\right) \\
& \bar{B}=\bar{\nabla} \times \bar{A} \\
& =\left(\begin{array}{ccc}
i & j & k \\
\partial_{1} & \partial_{2} & \partial_{3} \\
A^{1} & A^{2} & A^{2}
\end{array}\right) \\
& \bar{B}=\left(\partial_{2} A^{3}-\partial_{3} A^{2}\right)+\left(\partial_{1} A^{33}-\partial_{3} A^{\prime}\right)+ \\
& \left(\partial_{1} A^{2}-\partial_{2} A^{1}\right) \\
& \left.\left(-B_{1},-B_{2},-B_{3}\right)=\left(\partial^{2} A^{3}-\partial^{3} A^{2}\right), \partial^{3} A^{\prime}-\partial^{\prime} A^{3}\right),\left(\partial^{2} A^{2}-\partial^{2} A^{\prime}\right) \\
& F^{\mu V}=\left(\begin{array}{cccc}
0 & -E^{1} / C & -E^{2} / C & -E^{3} / C \\
E / C & 0 & -B^{3} & B^{2} \\
E^{2} / c & B^{3} & 0 & -B^{1} \\
E^{3} / C & -B^{2} & B^{\prime} & 0
\end{array}\right)
\end{aligned}
$$

"Education for Knowledge, Science and Culture"
-Shikshanmaharshi Dr. BapujiSalunkhe
Shri Swami Vivekanand Shikshan Sanstha, Kolhapur
Vivekanand College, Kolhapur (Autonomous)
Department of Physics
M.Sc. Part-I SEM II Internal Examination (2022-23)

Atomic and Molecular Physics
Time :- $11.00 \mathrm{am}-12.00$ noon
Total Marks: 20

Instructions:-

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of \log table and calculator is allowed.

Q1. Fill in the Blanks (1 mark for each)

1. What are the wave number range for mid IR region?
A) $12800-4000 \mathrm{~cm}^{-1}$
B) $4000-2000 \mathrm{~cm}^{-1}$
C) $4000-200 \mathrm{~cm}^{-1}$
D) $200-10 \mathrm{~cm}^{-1}$
2.The most common source of IR spectrometer is..........
A) Zirconium
B) Ytterbium
C) Nernst Glower
D) Erbium
2. What is the selection rule of AHO for vibrational energy levels transitions.?
A) $(1,-1)$
B) $(0,1)$
C) $\pm 1, \pm 2, \pm 3 \ldots$
D) $(1,1)$
3. B is rotaionl constant and is given by
A) $\mathrm{B}=\frac{h^{2}}{8 \pi^{2} I c}$
B) $\mathrm{B}=\frac{\hbar^{2}}{8 \pi^{2} I c}$
C) $\mathrm{B}=\frac{h}{8 \pi^{2} I c}$
D) $\mathrm{B}=\frac{\hbar}{8 \pi^{2} I c}$
4. For prolate symmetric top the condition is.......
A) $I_{A}=I_{B}=I_{C}$
B) $I_{B}=I_{C}>I_{A}$
C) $\mathrm{I}_{\mathrm{B}}=\mathrm{IC}_{\mathrm{C}}<\mathrm{I}_{\mathrm{A}}$
D) $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} \geq \mathrm{I}_{\mathrm{A}}$

Q2. Answer the following (Any one)

1. Derive the expression of energy for perfectly elastic body performing oscillations.
2. Obtain the expression for the energy and a spectra for rigid diatomic molecule.

Q3. Answer the following (Any one)

1. Write short note on P, R and Q branch with diagrams.
2. Explain linear, symmetric, anti-symmetric and spherical top molecules.
"Liseminarion of Effucation Sur Kituwiefige Science and Culture"

Vivekanand Coliege (Autonomous) Kolhapur Despatment of Physics
M.Sc. 1 Iaternal Enamiaction, April-2023

Attendance Sheet
Dater: Atnouic aod Mhlecular Plyysics
Time: 2MO- I. An pan.

।। ज्ञान, विज्ञान आणि सुसंस्कार यांसाठी शिक्षण प्रसार ।
VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

SUPPLIMENT

Suppliment No.: Internal Exam
Roll No.

$$
2022-23
$$

Class

$$
M \cdot S c-I
$$

Signature
of
Supervisor
Subject: Atomic and Molecular Test/ Tutorial No.: Physics
Div.:

QI

1. $200-10 \mathrm{~cm}^{-1}$
2. Zirconium
3. $(0,1)$
4. $B=\frac{\hbar}{8 \pi^{2} I C}$
5. $\quad I_{B}=I_{A}=I_{C}$

Q 2.
2) For rigid diatomic molecule, total energy is the sum of its translational and rotational and Vibrational energies.

1) Rotational energy ($E_{r 1}$) :-

The rotational energy of a diatomic moleule is given by

$$
F_{x t}=J(J+1) \frac{\hbar^{2}}{2 I}
$$

Erat - rotatioral enetrgy/
I- rotational quarivam biumbern

I Momeat of itsertia of Kas meiteviso
(2) Vibratianal erotgy

The vibrational enekgy of a derforme. molecule is givn by

$$
E_{v i \Delta}=(n+1 / 2) \mathrm{hv}
$$

Evib - Vibrational enerigy
n - Vibratioal quantum niemibere
h- Plancks conslast
1). Vibraticual frequancy of the kisenses

The total enexgy is Hu fume of nobsiavalard
vibrational energies

$$
E=E_{x c k}+E_{\text {vib }}
$$

As for the spectarm, the retational and v ibrational transitions in a diatoric nolecule-gite rise to speeific lines in the infaced and miswinne regions of the electromagnetic eq extrum

The rotational spectrum ean be expreoned by the rotational selection "uble

$$
\Delta J= \pm 1
$$

Vibratioial spectrum can be exprened by Vibratianal selectian kele;

$$
\Delta n= \pm 1
$$

14

1) The ilassibiration of molecules into different
 and spherical top, based on their molecule tiematiy. And rotational chaecocteristics.
2) Linear molecules-

Linear molecules have a straight-line arseingement if atoms. The central atom is hooded to two other afoins and the bond angle is $1.2^{\prime}, \quad$ eng $\mathrm{CO}_{2}, \mathrm{~N}, \mathrm{HCl}$
ii) Symmetric top molecules:-
a/timetric top molecules have a symmetric distribution of atoms around the central axis but they are not inear. The M.I is different along different axes.
examples:- $1 / 2 \mathrm{O}, \mathrm{NH}$, th s
iii) Antisymmetric top molecules:-

Antisymmetric top molecules have a less -symmetric distribution g atoms and they have two moment of inertia that are equal.
eg $\mathrm{H}_{2} \mathrm{O}_{2}$
iv) Spherical top molecules:-
spherical top molecules have a high degree of symmetry, with all three principal moments of inertia being equal.
egg $\mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{NH}_{3}$.
Linear molecules : $\Delta J= \pm 1$
Symmetric top molecules: $\Delta J=0, \pm 1$

Anti-symmetric top molecules:- $\Delta J=0, \pm 1$ Spherical top molecules:- $\Delta J=0, \pm, \pm 2$

