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In the present paper, an analytically investigated domain of decentered parameter and its effect on

the self-focusing of Hermit-cosh-Gaussian (HChG) laser beams in a collisional plasma have been

studied theoretically. The nonlinearity in the dielectric constant of plasma arising due to the non-

uniform heating of carriers along the wavefront of the laser beam has been employed in the present

investigation. The nonlinear differential equation of beam width parameter for various laser modes

of HChG beam is obtained by following the standard Akhamanov’s parabolic equation approach

under Wentzel-Kramers-Brillouin and paraxial approximations. The analytical treatment has

enabled us to define three distinct regions: self-focusing, self-trapping and defocusing, which are

presented graphically. Published by AIP Publishing. https://doi.org/10.1063/1.5016938

I. INTRODUCTION

Interaction of light with matter can be classified as a nonlin-

ear phenomenon, especially for an intense source of light. The

invention of high power laser beams has made it possible to

study such nonlinear interaction of strong electromagnetic waves

with plasmas. High energy laser beam and plasma interaction

gives a variety of phenomena which are important in many

applications, such as high harmonic generation,1–3 x-ray lasers,4

laser-driven fusion, laser based plasma accelerators,5–8 etc.

These applications require the laser beam to pass over several

Rayleigh lengths in a plasma with sustained energy exchange

between the laser beam and plasma media. The attention of

researchers has been attracted by different kinds of laser beams

such as Gaussian beams,9–13 Cosh-Gaussian,14–17 Hermit-cosh-

Gaussian (HChG) beams,18,19 Elliptical-Gaussian beams,20,21

Bessel-Gaussian beams,22 Leguerre-Gaussian beams,23–25 etc.

High energy laser beams induce intensity dependent nonlinear

changes in the refractive index which results in a self-focusing

phenomenon. There is experimental evidence of the phenome-

non of self-focusing observed in a plasma channel created by the

instantaneous response of the nonlinear refractive index to the

light beam.26 Self-focusing is responsible for the optical damage

that occurred in a solid by a high-power laser beam.27 Thus, the

study of the self-focusing phenomenon is important due to the

above stated applications and its relation to other nonlinear opti-

cal effects mentioned above.

When a laser beam, having a non-uniform intensity distri-

bution along its wavefront, propagates through the plasma,

electrons get heated and the temperature gradient is setup. In a

collisional plasma, the main source of field dependence of

effective dielectric constant is not ponderomotive force, but

the nonuniform redistribution of carriers on account of inho-

mogeneous heating of carriers arising from transverse variation

of the electric field along the wavefront. In the steady state,

this mechanism is seen to be more effective than the pondero-

motive force mechanism in characterizing the field dependence

of the effective dielectric constant. Thus, the effective dielec-

tric constant gets modified significantly, due to self-induced

nonlinearity dependence on the intensity of the laser beam.

Basically, self-induced nonlinearity causes the self-focusing

and defocusing phenomena in the plasma medium.27,28

In recent years, considerable interest has been evinced

towards the study of self-focusing of various modes of

HChG laser beam passing through different plasma media. It

has been found that HChG beams can be generated in a labo-

ratory by the superposition of two decentered Hermite-

Gaussian beams as the Cosh-Gaussian one.29 The present

theoretical analysis employs a parabolic equation approach

under Wentzel-Kramers-Brillouin (WKB) and paraxial

approximations. The decentered parameter plays an impor-

tant role in the self-focusing phenomenon. A literature sur-

vey shows that the decentered parameter has been explored

in different numerical intervals. However, in the present

paper, we have emphasized analytically to set the numerical

domain of decentered parameter for various nonlinear phe-

nomena such as self-focusing, self-trapping, and defocusing.

The systematic organization of this paper is as follows:

Sec. II describes the evolution of the beam width parameter

of the HChG laser beam propagating through a collisional

plasma for mode index values m¼ 0, 2, and 4. In Sec. III, a

detailed discussion of analytical investigation is presented

with graphs. Finally, a brief conclusion is added in Sec. IV.

II. FORMULATION

A. Field distribution of HChG laser beam in collisional
plasma

Consider the HChG laser beam propagating into the

plasma along the z direction, starting at z¼ 0 and having a

field distribution of the forma)mvtphyunishivaji@gmail.com
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where m is the mode index of a laser beam, b is the decen-

tered parameter, r is the radial distance from the center of

the beam, r0 is the waist width of Gaussian amplitude distri-

bution, E0 is the amplitude of Gaussian beam for the central

position at r¼ z¼ 0, and f is the dimensionless beam width

parameter. The effective dielectric constant of plasma can

also be written as30

e ¼ e0 þ /ðEE�Þ; (2)

where e0 ¼ 1� ðx2
p=x

2Þ is the linear part of dielectric con-

stant with xp¼ (4pne2/m)1=2 as the plasma frequency. Here,

e and m are the electronic charge and its rest mass,

respectively.

The second term in Eq. (2), the intensity dependent part

of dielectric constant for a collisional plasma, is given by

/ðEE�Þ ¼
x2

p

x2

aEE�

2þ aEE�

� �

; (3)

with

a ¼ e2M

6kBT0x2m2

� �

;

where M, kB, and T0 are the mass of the ion, the Boltzmann

constant, and the equilibrium temperature of plasma,

respectively.

B. Beam width parameter differential equations

The general wave equation of propagation of the laser

beam inside the plasma medium with effective dielectric

constant e can be written as

r2~E þ x2

c2
e~E þ ~r

~E:~re

e

� �

¼ 0: (4)

The last term on the left-hand side of Eq. (4) can be

neglected, provided that k�2r2ðlneÞ � 1, where k ¼ x
c

ffiffi

e
p

represents the wave number

r2~E þ x2

c2
e~E ¼ 0: (5)

In a cylindrical coordinate system, Eq. (5) can be written

as

@2~E

@z2
þ @2~E

@r2
þ 1

r

@~E

@r
þ x2

c2
e~E ¼ 0: (6)

We employ the WKB approximation to solve this equa-

tion. Solution of Eq. (6) for cylindrically symmetric beams

can be expressed as

E ¼ Aðr; zÞ exp iðxt� k0zÞ½ �; (7)

where x is the frequency of laser used. Neglecting @2A/@z2

implies that the characteristic distance (in the z-direction) of

intensity variation is much greater than the wavelength.

Equation (6) reduces to

2ik
@A

@z
¼ @2A

@r2
þ 1

r

@A

@r
þ k2A

e0
/ðAA�Þ: (8)

To solve this equation, we now introduce an eikonal S

as

A ¼ A0ðr; zÞ exp �ikSðr; zÞ½ �; (9)

where A0(r, z) and S(r, z) are the real function of r and z with

S(r, z) as the eikonal of the beam which determines the con-

vergence/divergence of the beam.

Substituting Eq. (9) into Eq. (8) and equating the real

and imaginary parts, we get
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The solution of Eqs. (10) and (11) for the cylindrical HChG

laser beam can be written as

S ¼ r2

2
bðzÞ þ /ðzÞ; (12)
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where b(z) can be expressed as (1/f)(@f/@z), which represents

the reciprocal of the curvature of the wavefront, /(z) is the

phase shift, and f is the beam width parameter which is a

measure of both axial intensity and width of the beam.

Following the approach given by Akhamanov et al.31

and developed by Sodha et al.,30 we have obtained a nonlin-

ear differential equation for the mode index of the HChG

laser beam. For m¼ 0:

d2f

dn2
¼ 12� 12b2 � b4

3f 3
�
2ð2� b2ÞaE2

0x
2
pfr

2
0

ðaE2
0 þ 2f 2Þ2c2

: (14)

For m¼ 2:
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d2f
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¼ � 84þ 60b2 þ b4

3f 3
þ
2ðb2 � 10ÞaE2

0x
2
pfr

2
0

ð2aE2
0 þ f 2Þ2c2

: (15)

For m¼ 4:

d2f

dn2
¼ � 308þ 108b2 þ b4

3f 3
þ
72ðb2 � 18ÞaE2

0x
2
pfr

2
0

ð72aE2
0 þ f 2Þ2c2

: (16)

III. RESULTS AND DISCUSSION

Equations (14)–(16) are second order nonlinear differ-

ential equations and represent the variation of the beam

width parameter f with the normalized distance of propaga-

tion n for m¼ 0, 2, and 4, respectively. The first term on the

right-hand side of these equations corresponds to the dif-

fraction divergence of the beam and the second term corre-

sponds to the convergence resulting from the nonlinearity.

It is important to note that for b¼ 0, we obtain a similar

equation obtained earlier by Sodha et al.30 for collisional

plasma.

Analytical investigation

The nonlinear equation contains a self-focusing term

and a divergence term. We have made an analytical investi-

gation to sustain the competition between these two terms.

Consider Eq. (14) of m¼ 0 mode for further investigation.

For critical conditions, taking d2f/dn2¼ 0, f¼ 1, aE2
0 ¼ p and

xpr0/c ¼ q, we obtain

6ð2� b2Þp
ð12� 12b2 � b4Þðpþ 2Þ2

¼ 1

q2
; (17)

where q2 will be minimum, when the LHS of Eq. (17)

is maximum. For the maximum value of LHS, we can

write

d

dp

6ð2� b2Þp
ð12� 12b2 � b4Þðpþ 2Þ2

( )

¼ 0: (18)

Solving this equation, we obtain p¼ 2. Substituting this

value into Eq. (17), we get

q0min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð12� 12b2 � b4Þ
3ð2� b2Þ

s

: (19)

Equation (19) shows that q0min is purely b dependent. Figure

1(a) is plotted from this equation, which shows that the value

of q0min decreases as b increases and reaches a minimum and

again increases for a further increase of b values. To support

this result, we have plotted the q Vs p graph from Eq. (17)

for various b values, shown in Fig. 1(b). It shows an initial

shift towards the downward direction with an increase in the

value of b and reaches a minimum of q and starts to shift in

the upward direction with a further increase in the value of b.

The value of b for a minimum of q can be calculated as:for a

minimum of q0min, we can write dq0min/db¼ 0, and solving

this condition for Eq. (19), we get b ¼
ffiffiffi

6
p

¼ 2:44949.

FIG. 1. Set of graphs for mode m ¼ 0. (a) Variation of q0min with decentered parameter b. (b) Critical curves for various values of decentered parameter b.

(c) Graphical domain of decentered parameter b for different nonlinear effects. (d) Variation of beam width parameter f with a normalised propagation distance

n for different values of decentered parameter b.
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So, we have to choose the value of b around
ffiffiffi

6
p

for fur-

ther study.

Substituting aE2
0 ¼ p and xpr0/c ¼ q into Eq. (14), we

obtain

d2f

dn2
¼ 12� 12b2 � b4

3f 3
� 2ð2� b2Þpfq2

ðpþ 2f 2Þ2
: (20)

Now, choose the value of q well above the critical

curve, that is q ¼ 6.5 and the value of p¼ 2 that we have

previously calculated. For critical conditions, taking f¼ 1

and
d2f

dn2
¼ 0, the Right Hand Side (RHS) of Eq. (20) becomes

RHS ¼ 1

3
ð12� 12b2 � b4Þ � 10:5625ð2� b2Þ: (21)

Equation (21) is a pure b dependent equation; from this

equation, we can find a self-focusing, self-trapping and defo-

cusing condition, and this equation is plotted in Fig. 1(c).

This figure shows different values of the domain of decen-

tered parameter in which a different nonlinear phenomenon

occurs.

In Fig. 1(d), we have displayed the variation of beam

width parameter f with a normalized propagation distance n

for different values of decentered parameter b, chosen from

each domain shown in Fig. 1(c).

From the figure, it is clear that

@2f=@n2 < 0 for : 0 < b < 1:75971

and for : b > 4:07320:

So, in this range of b value, self-focusing is observed

@2f=@n2 ¼ 0 for : b ¼ 1:75971

and for : b ¼ 4:07320:

These are the self-trapping conditions, so the beam passes

through the collisional plasma medium without any devia-

tion from these initial b values

@2f=@n2 > 0 for : 1:75971 < b < 4:07320:

In this domain of b values, the beam gets defocused. From

Figs. 1(c) and 1(d), it is clear that, as the b value increases

above b¼ 1.75971, the rate of defocusing increases, reaches

a maximum and again the rate starts to decrease for a further

increase in the value of b and finally gets self-trapped at

b¼ 4.07320.

A similar process is followed for a higher mode index

m¼ 2 and m¼ 4. Graphical results are shown in the set of

Figs. 2 and 3 for the mode index m¼ 2 and m¼ 4, respec-

tively, while the numerical results and the domain are tabu-

lated in Table I.

IV. CONCLUSIONS

We have investigated the domain of value of decentered

parameter b for a different nonlinear phenomenon, such as

self-focusing, self-trapping and defocusing by using simple

calculus. The following important conclusions are drawn

from the present analysis:

• Nonlinear phenomena are sensitive to the decentered

parameter b of the HChG beam, while passing through a

collisional plasma.

FIG. 2. Set of graphs for mode m ¼ 2. (a) Variation of q0min with decentered parameter b. (b) Critical curves for various values of decentered parameter b.

(c) Graphical domain of decentered parameter b for different nonlinear effects. (d) Variation of beam width parameter f with a normalised propagation distance

n for different values of decentered parameter b.
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• With the increase in the mode index of the laser beam, the

values of decentered parameter b for q0min increase.
• The dimensionless critical beam power p ¼ aE2

o decreases

with an increase in the mode index of the HChG laser

beam.
• For higher laser modes of the HChG beam, i.e., for m ¼ 2

and m ¼ 4, the domain of b values for different nonlinear

phenomena shifted towards higher values of b.

Thus, the present analytical investigations of decentered

parameter offer a choice to govern the propagation character-

istics of the HChG laser beam through collisional plasma.
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