"बान विद्यान आणि सुसंस्कार यासाठी शिक्षण प्रसार"

-शिक्षणमहर्षी डॉ. बापूजी भाळुंखे

Vivekanand College, Kolhapur (Autonomous) Department of Statistics Internal Examination (2022-23) Notice

Date: 09/11//2022

All the students of B.Sc. - I, II & III are hereby informed that, the internal examination of semester- I, III &V will be held as per following time table.

B.Sc I

Sr. No.	Class	Date	Time	Paper Code	Title of the Paper
01	B.Sc I	24/11/2022	10:30 am to 11:00 am	DSC-1004A	Descriptive Statistics - I
		25/11/2022	11:00 am to 11:30 am	DSC-1004A	Elementary Probability Theory

Nature of Question paper: Total 15 Marks

- Q.1 Choose correct alternatives (05 Marks)
- Q.2 Attempt any one (4 Marks)
- Q.3 Attempt any three (6 Marks)

B.Sc II

Sr. No.	Class	Date	Time	Paper Code	Title of the Paper
01		24/11/2022	4:30 pm to 5:00 pm	DSC-1004C1	Probability Distributions I
	01	B.Sc II	25/11/2022	2:45 pm to 3.30 pm	DSC-1004C2

Nature of Question paper: Total 20 Marks

Multiple choice questions: 10 on both sections.

B.Sc III

Sr. No.	Class	Date	Time	Paper Code	Title of the Paper
01		15/11/2022	11.30 am to 12.30 pm	DSE 1004E1	Section I: Probability Distributions
	B.Sc III	17/11/2022	11.30 am to 12.30 pm		Section II: Probability Theory
		18/11/2022	11.30 am to 12.30 pm		Section I: Sampling Theory
		19/11/2022	11.30 am to 12.30 pm	DSE 1004E2	Section II: Operations Research

Nature of Question paper: Total 20 Marks

Multiple choice questions: 10 on both sections.

VIVEKANAND COLLEGE, KOLHAPUR

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

B.Sc. Part- I (Statistics) (Sem-I) Internal Examination-2023 Section -1: Descriptive Statistics -I

Day: Tuesday Date: 24/11/2022 Time: 4pm to 5pm

Marks: 15

Instructions: (for example)

- 1) All the questions are compulsory.
- 2) Figures to the right indicate full marks
- 3) Use of log table/calculator is allowed

O. I. A) Select correct alternative

ii Which one of the following is least affected by extreme values?

A) A.M. B) G.M. C) H.M. D) Median

ii) With the help of ogive curve, one cannot determine....

B) Deciles C) Percentiles D) Mode

iii) Which one of the following is called as the best measures of dispersion?

A) Range

B) mean deviation C) Coefficient of variation D) Standard deviation

by If the mode of a frequency distribution $M_0=25$ and its mean X=25, then median of the

distribution is

A) 15 B) 0

D) 32

v) Mean deviation about is always less than mean deviation about any point.

A) Mean B) Median C) Mode

O. 2. Attempt any one

i) Write the merits of Median.

ii) If a & b are two positive observations then show that $A.M. \ge G.M. \ge H.M.$

Q. 3. Attempt any one

i) Define Percentile

- ii) Define Standard deviation
- iii) Define Mean deviation
- iv) Define Geometric Mean
- v) Define Mode

Vivekanand College, Kolhapur (Autonomous) Department of Statistics B.Sc. II SEM III Internal Examination

Subject: Probability Distribution and Statistical Methods II

Time: 4:15 pm to 5:00 pm Date: 17/11/2022

	Section I: Pro	obability Distribution	11
		amma variates with pa en distribution of Z is	rameters (8, 3), (8, 5), (8, 8)
i) G(8, 16)	ii) G(8, 10)	iii) G(8, 9)	iv) G(8,5)
ii) If $X \sim G(\theta, n)$ th	nen distribution of 6	X follows	
		iii) G $(\theta, \frac{n}{6})$	iv) G $(\frac{\theta}{6}, n)$
iii) If $X \sim \beta_2$ (m, n)	, then p.d.f of 1/X i	S	
i) β ₁ (m, n)	ii) β_1 (n, m)	iii) β ₂ (m, n)	iv) β_2 (n, m)
iv) If Y = R (m n)	then mean of X is		
$i)\frac{m}{}$ $ii)$	$\frac{n}{m-1}$ iii) $\frac{n-1}{m}$	iv) $\frac{m-1}{}$	
n-1	m-1 m	n . x .	
v)If X and y are iid		n distribution of $\frac{x}{x+y}$ is	
i) Gamma distribu	tion	ii) Beta distribution of	f I st kind
iii) Beta distributio	on of II nd kind	iv) Exponential distril	bution
vi) If X has chi-so	quare distribution	with variance 20 the	n mean of the distribution
is	•		
a) 0	b) 10	c) 20	d) None of these
vii) If X has Chi-so	uare distribution wi	th mode 12 then its m.	g.f. is
i) $(1-2t)^{-6}$	ii) $(1-2t)^{-12}$	iii) (1 – 2t) ⁻¹⁰	iv) $(1-2t)^{-7}$
viii) If $X \sim t_n$ then m) ()	
i) n	ii) 2n	iii) 0	iv) None of these
		then Var(X) is	,
			3
i) 3/5	ii) $\frac{5}{3}$	iii) $\frac{4}{3}$	iv) $\frac{3}{4}$
x)If $X \sim F(n_1, n_2)$, I	$f_{n_2} \rightarrow \infty$ then n1F ha	as the distribution	
	iii) χ_{n1}^2		

Vivekanand College, Kolhapur (Autonomous) Department of Statistics B.Sc. II SEM III Internal Examination

Subject: Probability Distribution and Statistical Methods II
Date: 18/11/2022 Time: 2:45 pm Time: 2:45 pm to 3:30 pm

Section II: Statistical Methods II
)A type of statistical test based on type of hypothesis.
A) Simple B) Null C) Alternative D) Composite
)In testing of hypothesis, type II error is
A) Reject H ₀ when it is true B) Accept H ₀ when it is true
C)Reject H ₀ when it is false D) Accept H ₀ when it is false
)Probability of rejecting H ₀ when it is true is equal to
A) level of significance B) probability of type I error
C) both a and b D) power of the test
Off Z_{cal} and Z_{α} be the respectively calculated and critical values of test statistic based on arge sample size then for right tailed null hypothesis H_0 is rejected if and only if
A) $Z_{cal} > Z_{\alpha}$ B) $Z_{cal} < Z_{\alpha}$ C) $ Z_{cal} > Z_{\alpha}$ D) $Z_{cal} < -Z_{\alpha}$
) With usual notations based on large sample size test statistic to test H_0 : $\mu = 0$ v/s H_1 : $\mu \neq 0$
S
A) $\frac{\overline{X}}{\sigma/\sqrt{n}}$ B) $\frac{\overline{X}-\mu}{s/\sqrt{n}}$ B) $\frac{\overline{X}}{s/\sqrt{n}}$ D) $\frac{\overline{X}}{\sigma/n}$
Student t-test is applicable in case of testing equality of
A) means B) proportions
C) variances D) correlations
The degree of freedom of test statistic in paired t - test based on n pairs of observations is
A) $n-1$ B) n C) $2(n-1)$ D) $2n$
(3)The Chi-square test is not used for
A) testing goodness of fit
B) testing independence of attribute
C) testing equality of two population variance
D) testing goodness of fit of regression line
The value of test statistic in F - test used for testing equality of two population variances is
ilways
A) > 0 B) < 0 C) > 1 D) Between 0 and 1
(0) Equality of two normal population variances can be tested by
A) F test R) 7 test C) Chi-square test D) t test

Vivekanand College, Kolhapur (Autonomous) **Department of Statistics** B.Sc. III Sem V Internal Examination 2022-23

Subject: Probability Theory Date: 17/11/2022

1) If x ₁ , x ₂ , x ₃ is r.s. form U (0	1) distribution then expected value of x ₍₂₎ is

C) 0.5 D) 0.1 B) 0.6 A) 0.4

Total Marks 10

2) If x_1, x_2, \dots, x_n is r.s. of size n from U (0,1) then probability distribution of n^{th} (maximum) order statistic is.....

C) $(n-2)^{n-2}$ D) $(n-1)(1-x)^{n-1}$ A) $n(1-x)^{n-1}$ B) nx^{n-1}

3) Let x_1, x_2, \dots xn is i.i.d. random variables with pdf f(x) and distribution function F(x) then distribution function of 1st (minimum) order statistic is..... [1-

A) $1-[1-F(x)]^n$ C) [1-F(x)] B) $[F(x)]^n$

4) Convergence in distribution of sample mean to normal distribution this result is given by,

A) Chebychev's inequality

B) Weak law of large Number

C) Central limit theorem

D) chapman kolmogorav equation

5) If x1, x2......... xn are independent random sample drawn from population with mean μ_1 And finite variance σ^2 then WLLN states,

A)
$$\bar{X}_n \xrightarrow{p} \mu$$

$$\mathbf{B})\bar{x}_n \xrightarrow{p} \bar{\mu}$$

B)
$$\bar{x}_n \xrightarrow{p} \bar{\mu}$$
 Where, $\bar{\mu} = \frac{1}{n} \sum \mu_1$

$$C)x_n \xrightarrow{p} \bar{\mu}$$

D)
$$x_n \stackrel{p}{\to} \mu$$

6)Let X1, X2, ... be a sequence of independent and identically distributed Chi-square random variables, each having 4 degrees of freedom. Define $S_n = \sum X_i^2$ $n = 1, 2, \dots$ If $\frac{S_n}{n} \stackrel{p}{\to} \mu$, as $n \to \infty$ then μ is equal to......

A) 8

D) 32.

7) If $X_n \xrightarrow{P} X$, then.....

A) $X_n^2 \xrightarrow{P} X$

8) If $P=P_{ij}$ is transition probability matrix of Markov chain then state j is accessible from sate i iff

A) $P_{ij} > 0$

B) $P_{ii} > 0$

C) $P_{ij}^{(n)} > 0$ for some n D) $P_{ji}^{(n)} > 0$ for some n9) If in a transition probability matrix of Markov chain $P=(P_{ij})$, the element $P_{zz}=1$ then Z is

- A) absorbing and not recurrent
- B) recurrent and not absorbing
- C) recurrent and absorbing
- D) none of them

10) Higher order transition probabilities are expressed in lower order transition probabilities using

A) Markov inequality

- B) Chebychev's inequality
- C) Chapman-Kolmogorov equation
- D) None of these

"ৱাল বিজ্ঞাল প্লাণি মুম্মাইকাম বামাঠী খ্লিষাতা प্रমাম"

-शिक्षणमहर्षी ठॉ.बापूजी आळूंखे

Vivekanand College, Kolhapur (Autonomous) Department of Statistics Internal examination (2022-23)

Notice

Date: 05 /04 /2023

All the students of B.Sc. - I, II & III are hereby informed that, the internal examination of semester- II, IV&VI will be held as per following time table.

B.Sc I

Sr. No.	Class	Date	Time	Paper Code	Title of the Paper
01	B.Sc I	12/04/2023	02.00 pm to 03.00 pm	DSC-1004B	Descriptive Statistics II
		13/04/2023	11.15 am to 12.15 pm	DSC-1004B	Discrete Probability Distributions

Nature of Question paper: Total 15 Marks

- Q.1 Choose correct alternatives (05 Marks)
- O.2 Attempt any one (4 Marks)
- O.3 Attempt any three (6 Marks)

B.Sc II

Sr. No.	Class	Date	Time	Paper Code	Title of the Paper
2	B.Sc II	12/04/2023	2.45 pm to 03.30 pm	DSC-1004D1	Probability Distributions -II
		13/04/2023	4.15 pm to 5.00 pm	DSC-1004D2	Introduction to Reliability Theory & Testing of Hypothesis

Nature of Question paper: Total 15 Marks

15 MCO's for 1 mark each

B.Sc III

Sr. No.	Class	Date	Time	Paper Code	Title of the Paper
01 B.	B.Sc III	10/04/2023	11.30 am to 12.30 pm	DSC-1004F1	Statistical Inference-II
	D.Se III	12/04/2023 11.30 am to 12.30 pm	DSC-1004F2	Design of Experiments, Quality Management & Data Mining	

Nature of Question paper: Total 20 Marks

Multiple choice questions: 10 on both sections.

NAND CO JUNE

VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

Vivekanand college, Kolhapur (Autonomous) Department of Statistics BSc-I -Sem -II Internal Examination Subject-Discrete probability distributions

Dat			

Total marks 20

Q.1 Choose the correct alt	ernative.			(04)	
1) A random variable X-	→H(N, M,n) who	en $N \rightarrow \infty$ and	$\frac{M}{N}$ = p, the dis	stribution of X is.	
a) B(n,q) b)	B(M,p)	c) B(n,p)	d) Non	e of these	
2) Sum of independent iden					
A) Binomial Distributi C) Discrete uniform D	on	B) Poisso	n Distributio	n	
 C) Discrete uniform D 	istribution	D) Geom	etric Distribu	ition	
3) Relation between mean a					
a) mean < variance	b) mean > v	ariance			
c) mean = variance	d) none of	these			
4)If $X \rightarrow B(n,p)$ tends to Poi	sson(m) distribu	tion if,			
A) $n \to \infty$, $p \to 1/2$	B) n →	$0,p\to\infty$			
C) n \rightarrow 100, p \rightarrow 0	D) n →	∞ , p \rightarrow 0, np	= m > 0		
5) If discrete random varial	ole X follows Ur	niform distrib	ution on 1, 2,	3n then varian	nce of
X is					
A) $(n^2-1)/12$	B) (n ² -1)/1	2 (C) (n+1)/2	D) (n-1)/2	
Q.2 Attempt any one		(04)			
1) Find mean and varian	ce of Poisson dis	stribution.			
2) Define uniform distri	bution .Obtain it	s mean and v	ariance.		
Q.3 Attempt any three.		(06)			
 Define Bernoulli distr 					
Write additive proper					
Define Hyper geometr	ic distribution V	rite its mean	and variance		

4) Obtain recurrence relation for Binomial distribution. 5) Write note on nature of Binomial distribution.

Vivekanand college, Kolhapur (Autonomous) Department of Statistics

B.Sc. II Sem IV Internal Examination
Paper VIII: Introduction to Reliability Theory & Testing of Hypothesis **Total Marks 15** Date: 13/04/2023

Instructions:

) All the questions	are compulsory	1.				
Each question ca						
Given statement						
i) Critical re	gion is the regio	n of acc	epting H ₀			
ii) $H_0: \theta = 0$	is a simple null	hypothe	sis.			
	-test is applicab			es.		
	μ ₂ is left tailed h					
among the given s						
A) ii) and iv)			C) ii) and iii)	D) None o	of the above	
			197	127		
A sample of 12 i	items are taken	from N(μ, σ^2) both μ	and o2 un	known. To t	est H_0 : $\mu =$
5 against H₁: μ≠						
A) t test	B) Chi-square	e test	C) No	rmal test	D) F tes	st
Standard error of	statistic T is giv	en by				
C) Dy [1	$\frac{E(T)]^2}{E(T)]^2}$	D) V	T2 T			
C) E(1°)-[E	3(1)]-	D) EV	11			
For testing hypot	hosis U. $\sigma^2 = \epsilon$	2 which	of the followi	ng test to be	e used?	
	B) Chi-square			D) F test	c useu.	
A) L test	B) CIII-square	test	C) i icsi	D) I test		
The mean difference is 5. The				is 15 and th	he standard o	leviation of
A) 0	B) 3	C) 27	D) 9			
0.000 to 20	530 = 1					
The value of chi s	square statistic fo	or good	ness of fit test i	is zero if	***	
A) $\sum O_i = \sum$			B) $\sum O_i < \sum I$			
C) $O_i = E_i$ for	or all i		D) All of the	above		
200						
Test of hypothes	is H_0 : $\mu = 1500$	against 1	H_1 : $\mu < 1500 \text{ fg}$	eads toto	est.	
A) One side	ed right tailed		B) Two tail	led		
C) One side	d left tailed		D) All of the	above		
					-200 W D#12-WY0100 G-8840	1.1
) In the context of			esis, if level of	significanc	ce a increase	d then
	n region is unalt					
	n region decreas					
	n region also inc					
D) Rejection	n region depend	s on the	form of alterna	tive.		
) Probability of re	jecting H. when	it is true	is equal to			
	significance	It is truc	B) probabil		error	
			D) power o		Ciroi	
C) both A a	nd B		D) power o	i the test		
0) A parametric h		h compl	etely specifies	all the para	ameters in a	probability
istribution is calle			D) 6: 1	••	1 4	
A) Simple	hypothesis		B) Simple or	composite	hypothesis	

		e test is not us					-
		ndependence of					
		pulation varia					
D) testing go	oodness of fit	of regression	line			
12)75.	d	fordom of t	Ohi amana ta	tt:t: C.	and a state of the second and the	Charles In	
		igency table a		est statistics to	or testing independent at	ributes in	
1	A) 12	B) 9	C) 8	D) 6			1
		est statistic in	F – test used	d for testing eq	quality of two population	variances	
is alwa		B) < 0	(c) > 1 D)	Between 0 as	-41		
	A) > 0	B) < 0 C	.) > 1 D)	Between 0 at	nd I		
14) Eq.	uality of tw	o normal pop	ulation varia	nces can be tes	ted by		
	A) F test	B) Z test		quare test	D) t test		
							4
15) Wi 0 is	th usual no	tations based	on small sam	ple size test st	tatistic to test H_0 : $\mu = 0$ v	s H ₁ : μ ≠	
0 15	. X	7- X-μ	\overline{X}	\overline{X}			
	$A) \frac{1}{\sigma/\sqrt{n}}$	B) $\frac{\overline{X} - \mu}{\sigma^2 / \sqrt{n}}$	$C) \frac{1}{8/\sqrt{n}}$	D) $\frac{\sigma}{n}$			
							1
							1
							8
							2

D) None of these

C) Composite hypothesis

on data.

Vivekanand College, Kolhapur (Autonomous) Department of Statistics BSc-III -Sem -VI Internal Examination

Subject-Statistical Inference II Time: 11.30 am to 12.30 pm Date: 10/04/2023

) T	he most preferred confid	dence interval for a pa	arameter O should be	
	a) with shortest width a			
	b) with largest width ar	nd largest confidence	coefficient	
	c) based on sufficient s	tatistics		
	d) both (a) and (b)			
) Gi	ven that $P(4.4 \le \mu \le 15.7)$	7)= 0.90, Which of the	e following is correct?	
	a) The width of confi	dence interval is 11.3		
	b) 4.4 and 15.7 are 90	0% confidence limits	of μ.	
	c) Probability that μ l	ics in the interval (4.4	4, 15.7) is .90 .	
	d) All (a) to (c) are tr	ue		
) If	$X_1, X_2,, X_n$ is a ran	ndom sample from ex	xponential with paran	neter θ then interval
stim	nate of θ can be obtained	l by use of		
	 a) Normal distribution 	on	b) t-distribution	
	 c) Chi-square distribu 	ution	d) F-distribution	
	sample of size 144 from		e sample mean $\overline{X} = 10$	and sample variance
=36	then 95% confidence i	nterval for μ is		
	a) (9.02, 10.98)	b) (9.02, 9.98)	c) (10.02, 10.98)	d) (9.20, 10.98)
11	random variable X has	N(u \arg 2) distribution	than which of the fall	avina ie simala null
	thesis?	N(μ,ο)-distribution	their which of the foli	owing is simple mun
ypo	a) μ =0	b) μ=10	c) $\sigma^2 = 16$	d) $\mu = 10$, $\sigma^2 = 16$
w	hich of the following sta		0)0 10	α) μ 10, 0 10
,			ue is known as type II	error
		test leads to a Most po		
			ue is known as type I	error.
	d) All the above are		71	
11	R-test for testing the e	quality of variances	H_0 : $\sigma_1^2 = \sigma_2^2$ against	$H_1: \sigma_1^2 \neq \sigma_2^2$ of two
	al populations with unk			22
Ottii	a) Student t-test	b) F-test	c) Chi-square test	d) Z-test
١ ٨٠	urn contains 10 marble			어디 이번 의료를 되면 기급이 되는 것이
7.55.00	est $H_1:\theta=5$ the following		이 그렇게 되었다는 아이들이 하지만 그 회에 대한 중에 있다.	[1] - [1] -
-	out replacement scheme	~ 1		
st is		and reject rio if they	y are of different colo	is. The power of this
or i	a) 4/9 b)	1/3 c) 5/9	d) 2/3	
) If	statistical test T for test		ATTENDED TO SEE THE SECOND OF	Iternative is at least
	owerful as any other tes			internative is at ieust
P	a) UMP – test) MP – test	
	c) LR - test		d) None of them	
0)			nfidence interval lengtl	n is,
	a) Decreases		b) Increases	
	c) Stays as same			decrease depending