Vivekanand College, Kolhapur (Autonomous) Department of Statistics Internal Examination (2023-24)

Notice

Date: 03/10/2023

All the students of B.Sc.-I (Major, Minor & open elective subject) are hereby informed that, the internal examination of Semester-I will be held as per following time table.

Sr. No.	Date Time		Title of the Paper	
01	25/10/2023	12.20 pm to 01.10 pm	Descriptive Statistics I	
	26/10/2023	12.20 pm to 01.10 pm	Elementary Probability Theory	

Nature of Question Paper (Total Marks = 10)

Que. 1) 4 MCQ's each carrying 1 mark

Que. 2) Solve any 2 questions out of 3 (3 \times 2 = 6)

(Ms. V. V. Pawar)
HEAD
DEPARTMENT OF STATISTICS
VIVEKANAND COLLEGE, KOLHAPUR
(EMPOWERED AUTONOMOUS)

Vivekanand College, Kolhapur (Empowered Autonomous)

Department of Statistics

B.Sc. I Semester- I

Internal Examination

Subject: Descriptive Statistics I

Wednesday 25/10/2023 Marks:10 Time: 12:20 PM-1:10PM

All questions are compulsory.

Q.1 Select the most correct alternative.

[04]

- 1. The measurement on height & weight are made onscale
- a) nominal b) ordinal c) interval d) ratio
- 2. Primary data means
- a) original data
- b) it may be result of survey
- c) it may be result of enquiry
- d) All the above
- 3.mean=25, mode=75 then the value of median is.......
- a) 50 b) 75
- c) 25
- d) none of these
- 4. The algebraic sum of deviations of observations from their arithmetic mean is
- a) minimum b) zero c) one d) greater than zero
- Q.2 Define/ Solve the following. (Any two)

[3*2=06]

- i) SRSWOR
- ii) Combined mean & Harmonic Mean
- iii) Write the formula for mean, median & mode in case of grouped frequency distribution.

Vivekanand College, Kolhapur (Empowered Autonomous) Department of Statistics B.Sc. I Sem- I

Internal Examination

Time12.20PM-1.10PM

Subject: Elementary Probability Theory

Thursday 26/10/2023

ii) Exhaustive events iii) Sure event..

All questions are compulsory.	
Q.1 Choose the correct alternative.	[05]
1. If $A \subseteq B$, then $P(A^c \cap B) = \dots$	
a) P(A) b) P(B) c)	P(B)-P(A) d) $P(A)-P(B)$
2. Discrete sample space contains	sample points . infinite d) finite & countably infinite
3.Let A and B be two events defined on sa	imple space, then occurrence of both A and B is
a) A ^c ∩B b) A∩B c) A∩B ^c	d) AUB
4. Which of the following is true?	
a) $P(A \cap B) \leq P(A)$	b) $P(A) \le P(A \cup B)$
c) $P(A \cup B) \leq P(A) + P(B)$	d) All the above
5. The sample space corresponding to the	ne experiment "Three seeds are planted and total
number of seeds germinated are recorded	after a week" is
a) (0,3) b) {0,1,2,3} c) {1,2,3}	d) [0,3]
Q.1 Define following terms.(Any two) i) Axiomatic definition of probability	Mon_ [05]

Vivekanand College, Kolhapur (Autonomous) Department of Statistics Internal Examination (2023-24)

Notice

Date: 03/10/2023

All the students of $\mathbf{B.Sc.} - \mathbf{II}$ are hereby informed that, the internal examination of **Semester-III** will be held as per following time table.

Sr. No.	Date Time		Title of the Paper	
	25/10/2023	2.10 pm to 3.00 pm	Probability Distributions -I	
1	26/10/2023	3.50 pm to 4.40 pm	Statistical Method	

Nature of Question Paper (Total Marks = 15)

Que. 1) 5 MCQ's each carrying 1 mark

Que. 2) Solve any 2 questions out of 3 (5 \times 2 = 10)

(Ms. V. V. Pawar)

DEPARTMENT OF STATISTICS
VIVEKANAND COLLEGE, KOLHAPUR
(EMPOWERED AUTONOMOUS)

Vivekanand College, Kolhapur (Empowered Autonomous)

Department of Statistics B.Sc. II Semester-III

Internal Examination Subject: Probability Distributions I

Wednesday 25/10/2023

Marks:20 Time: :20 PM-1:10PM

All questions are compulsory.

O.1 Select the most correct alternative.

- 1. If X is a continuous r.v on $(0,\infty)$ with pdf f(x) then geometric mean is given by.....
- a) Antilog[E(X)] b) Antilog[E $\log(\frac{1}{x})$]
- c)Antilog [E(logX)] d) Antilog[E(XlogX)]
- 2. If F(x) is a distribution function and $x_2>x_1$ then
- a) $F(x_2).F(x_1)$
- b) $F(x_2) \le F(x_1)$
- c) $F(x_2) \ge F(x_1)$
- d) $F(x_2) > F(x_1)$
- 3. If X is a r.v. with pdf

f(x)=1; 0 < x < 1 then its m.g.f is

a)
$$\frac{1}{t}(e^t - 1)$$
 b) $t(e^t)$

a)
$$\frac{1}{t}(e^t - 1)$$
 b) $t(e^t - 1)$ c) $t(e^{-t} - 1)$ d) $\frac{1}{t}(e^{-t} - 1)$

- 4. The value of constant C if the following function is pdf
 - f(x) = C; $-4 \le x \le 4$, C > 0
 - a)1/4 b)1/8 c)1/2 d) none of these
- 5. If x is a r.v. with pdf
- $f(x) = e^{-x}$; x > 0
 - 0; o. w then the value of mean is.....
 - b) 0 a) e^1
- c) 1 d) none of these

O.2 Attempt any three.

1. Suppose X is a r.v with pdf

$$f(x) = \frac{1}{(1+x)^2}; x \ge 0$$

If $A = \{x | 1 < x < 9\}$ and $B = \{x | 0 < x < 4\}$

Then find i) P(A) ii) P(B) iii) $P(A \cap B)$ iv) $P(A \cup B)$

2. If a r.v.X has pdf

$$f(x) = \frac{c}{x}$$
; $1 < x < 3$ then find

- 3. Define the following terms
- i) p.d.f ii) Distribution function iii) m.g.f
- 4. If X has p.d.f, $f(x) = \frac{3}{2}x^2$; $-1 \le x \le 1$ find the pdf of i) $Y=x^2$ ii) Y=|x|

Vivekanand college, Kolhapur (Empowered Autonomous) **Department of Statistics**

B.Sc. II Sem III Internal Examination 2023-24 Paper VI: Statistical Methods

Date:26/10/2023

Time:03.50 pm to 4.40 pm

Total Marks 15

O1) Choose Correct Alternative

i) If $X_2 = aX_1 + bX_3 + c$ is best regression plane of X_2 on X_1 and X_3 then.....

A)
$$a = b_{23.1}$$
, $b = b_{21.3}$

B)
$$a = b_{21.3}$$
, $b = b_{23.1}$

C)
$$a = b_{23}$$
, $b = b_{32}$

D)
$$a = b_{23.1}$$
, $b = b_{32.1}$

A)
$$R_{1,23} = 1$$
 B) $R_{2,13} = 1$ C) $R_{3,12} = 1$

C)
$$R_{3.12}=1$$

D)
$$R_{1,23} = 0$$

 $(1 \times 5 = 5)$

iii)The necessary and sufficient condition for three planes X1 on X2 and X3, X2 on X₁ and X₃, X₃ on X₁ and X₂ are coincident is

A) $r_{12}+r_{13}+r_{23}-2r_{12}r_{13}r_{23}=1$

B) $r_{12}+r_{13}+r_{23}-2r_{12}r_{13}r_{23}=0$

C)r
$$^{2}_{12}$$
+ r $^{2}_{13}$ + r $^{2}_{23}$ -2r $_{12}$ r $_{13}$ r $_{23}$ =1 D) none iv) The correct relationship between R $^{2}_{123}$ and r $_{12}$ is.......

D) none of these

A)1-
$$R^2_{1,23}$$
 = (1- r^2_{12}) (1- $r^2_{13,2}$)

B)
$$R^2_{1,23} = (1 - r^2_{12}) (1 - r^2_{13,2})$$

C)1-
$$R^2_{1.23}$$
 = (1- r^2_{13}) (1- $r^2_{13.2}$) D) $R^2_{1.23}$ =

D)
$$R^2_{1,23} = (1 - r^2_{13}) (1 - r^2_{1,23})$$

v) Let $X_1 = Y_1 + Y_2$, $X_2 = Y_2 + Y_3$, $X_3 = Y_1 + Y_3$ where Y_1 , Y_2 and Y_3 are mutually uncorrelated variables with mean 0 and standard deviation 1 then value of $R_{1,23} = \dots$

$$A)\frac{1}{\sqrt{3}}$$

B)
$$\frac{1}{3}$$

$$D)\frac{1}{\sqrt{3}}$$

Q2) Attempt any Two ii) State the formulae of equations of three regression planes and all partial regression coefficients.

- ii) Show that partial correlation coefficient is the geometric mean of two partial regression
- iii) If total corelation coefficients $r_{12} = r_{13} = r_{23} = \rho$ ($\rho \neq +1$ or -1) then show that

$$1-R^2_{1,23} = \frac{(1-\rho)(1+2\rho)}{1+\rho}$$

Vivekanand College, Kolhapur (Empowered Autonomous) Department of Statistics B.Sc – III Internal Examination (2023-24)

Notice

Date: 03/10/2023

All the students of B.Sc. – III are hereby informed that, the Internal Examination of Semester – V will be held as per following time table.

Sr.No.	Date	Time	Paper No.
1	18/10/2023	DA APOUNT	Paper – IX : Probability Distributions
2	19/10/2023	12.15pm to	Paper – X : Statistical Inference-I
3	20/10/2023	01.15pm	Paper - XI: Sampling Theory
4	21/10/2023		Paper – XII: Operation Research

Nature of Question Paper (Total Marks = 15)

Que. 1) 5 MCQ's each carrying 1 mark

Que. 2) Solve any 2 questions out of 3 $(5 \times 2 = 10)$

(Ms. Pawar V. V.)

HEAD
DEPARTMENT OF STATISTICS
VIVEKANAND COLLEGE, KOLHAPUR
(EMPOWERED AUTONOMOUS)

Vivekanand college, Kolhapur (Empowered Autonomous) Department of Statistics B.Sc. III Sem V Internal Examination 2023-24

Paper IX: Probability Distributions

Total Marks 15

Time:12.15 pm to 1.15 pm

Date:18/10/2023

 The variance of 	Logistic distribu	tion with parame	eters µ and o is		
a) $\frac{\sigma^2 \pi^2}{2}$	b)	$\frac{\sigma^2 \pi^2}{2}$	c) $\frac{\sigma^2}{3}$	d) $\frac{\sigma^2 \pi^3}{6}$	
2) Mode of Parato					
a) 6	b) 2	c) 8	d) 3		
a) 6 3) If (X, Y) ~ BN	$(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$	then $E(X Y =$	y) is	w.	
a) μ_1	b) μ ₂	c) $\mu_1 + \rho \frac{\sigma_1}{\sigma_2}$	$y-\mu_2$) d)	$\mu_1 + \rho \frac{\sigma_2}{\sigma_3} (y - \mu_2)$	
4) If $x_1, x_2,, x_n$	are i.id. standard	Cauchy Variable	es then \bar{x} follows:	•	
a) $C(n, n^2)$	b) C	(n, n)	c) $C(\mu, \lambda)$	d) C (0, 1)	
5)If X follows Lo	gnormal distributi	ion with paramet	er µ=5 and o=2 ther	mean and mode of X are	44.242.66
a) (e ⁷ ,e ¹)	b) (e ¹ .e ⁷)	(e3,e1)	d) (9,1)		

Q2) Attempt any Two

 $(2 \times 5 = 10)$

- a) Define multinomial distribution. Obtain Moment generating function (m.g.f.) of multinomial
- b) Define Weibull distributes with parameters α and β . find mean and C.V. of the Weibull distribution. c) Define Laplace distribution with parameters (μ,λ) . Obtain mean deviation about mean of Laplace (μ,λ) .

Vivekanand college, Kolhapur (Empowered Autonomous) **Department of Statistics** B.Sc. III Sem V Internal Examination 2023-24 Paper X: Statistical Inference I

-			_	
40	otal	M/I c	PIZE	15
	utai	TATE	11 173	1.0

Time:12.15 pm to 1.15 pm

Date:19/10/2023

21)	Choose Correct Alternative
	$(1\times 5=5)$
1.	If \bar{x} is sufficient for μ then is sufficient for μ^2 .
	a) \bar{x} b) \bar{x}^2 c) both a) and b) d) none of these
2.	If X_1, X_2, \ldots, X_n is a random sample from a population $N(\mu, \sigma^2)$ then $\sum \frac{x_i}{n}$ is
	a) Unbiased for μ c) Sufficient for μ
	b) Consistent for μ d) All the above
3.	The standard error of an unbiased estimator of μ based on a random sample of size
	100 from
	N (μ, 100) is
	a) 5 b) 2 c) 10 d) 1
4.	If T is unbiased estimator of θ , a and b are two integers then
	a) T^2 unbiased estimator of θ^2 b) $aT+b$ is unbiased estimator of
	θ
	c) aT+b is unbiased estimator of $a\theta + b$ d) T is unbiased estimator of $a\theta$
	b
5.	The sufficient statistic for σ^2 of N (0, σ^2) based on a single observation x is a) x^2 b) x c) $ x $ d) $2x$

Q2) Attempt any Two

 $(2 \times 5 = 10)$

- 1. If $T_1 \& T_2$ be two unbiased estimators of θ having same variance. Show that correlation coefficient between T1 & T2 is greater than (2e-1) where e is the efficiency of T₂ w.r.t T_{1.}
- 2. Define sufficient statistic based on Neyman factorization criteria. The continuous r.v. X has following p.d.f. $f(x, \theta) = e^{-(x-\theta)}$; $x \ge \theta$;o.w

Find sufficient statistic for θ .

3. Show that sample mean square is unbiased & consistent estimator of population variance.

mean \overline{Y} .

3. Write note on sampling and non-sampling errors.

Vivekanand college, Kolhapur (Empowered Autonomous) **Department of Statistics** B.Sc. III Sem- V

	raper NuAII Internai Exan	шпашоп
	Subject: Sampling Theo	ry
Tuesday 20/10/2023	(Total marks 20)	Tim

Time 12.15pm-1.15pm

All questions are compulsory.				
Q.1 Choose the correct alternative. [05]				
1. For a large population with population variance S^2 confidence coefficient (1- α) and margin of error 'd' the size of SRSWOR will be:				
a) $\frac{Z_{\alpha/2}^2 S^2}{d^2}$ b) $\frac{Z_{\alpha/2}^2}{S^2 d^2}$				
c) $\frac{Z_{a/2}^2S^2}{2d^2}$ d) none of these				
List of all the units of the population is called a) Random sampling b) Bias				
c) Sampling frame d) probability sampling				
3.) In optimum allocation for a fixed cost ,large sample would be required from a stratum if				
,				
a) sampling cost per unit is low in the stratum b) stratum size is large				
c) stratum variability (Si) is large d) All of these				
4. In stratified random sampling with stratum sizes N1=800, N2=300 and stratum variability $S_1 = 144$, $S_2 = 400$ respectively, then under Neyman allocation, the ratio of sample sizes n1/n2 is given by				
a) 1.96 b) 0.96				
c) 1.94 d) None of these				
5. Sampling error can be reduced by				
a) Non probability sampling b) Decreasing the sample size c) Increasing the population size d) Increasing the sample size				
Q.2 Solve the following. [15]				
1. In SRSWOR prove that variance of sample mean is $\frac{N-n}{N} * \frac{S^2}{n}$				
2. Explain Stratified random sampling. Prove that \bar{v}_{ij} is an unbiased estimate of nonulation				

Vivekanand College, Kolhapur (Empowered Autonomous) Department of Statistics B.Sc.-III Sem-V Internal Examination 2023-24

Paper XII: Operations Research

Marks: 20

Time: 12.15 pm to 1.15 pm

Date:

21/10/2023

Instructions: All questions are compulsory.

Each question carries equal marks.

[5]

Q1. Select the most correct alternative

- A variable is used to convert ≤ inequality to equation is called as ...
 - a) Surplus b) Slack c) Artificial d) Basic
- 2. The method of solving Transportation problem is known as ...
 - a) MODI method b) reduced matrix method c) Hungarian method d) None of the above
- 3. In Big-M method, where M is very big number is the cost of \dots
 - a) Slack variables b) Surplus variables c) Basic variables d) Artificial variables
- 4. The Assignment problem is said to be balanced if, ...
 - a) No. of rows < No. of columns
 - b) No. of rows > No. of columns
 - c) No. of rows = No. of columns
 - d) All of the above
- 5. If dual has unbounded solution, then primal has ...
 - a) No feasible solution b) unbounded solution c) feasible solution d) none of the above

Q2. Attempt any two out of three

[10]

- 1. Define the following terms.
- a) Solution b) Basic solution c) Slack variable.
- 2. Distinguish between Transportation problem and Assignment problem.
- 3. Explain Big M method to solve linear programming problems.

