Vivekanand College, Kolhapur (Autonomous) Department of Statistics Internal Examination (2018-19) Notice

Date: 01/09/2018

All the students of B.Sc. III are hereby informed that, the internal examination of semester V will be held as per following time table.

Date	Time	Paper No.	Title of the Paper
01/10/2018	1:00 pm to 1:15 pm	Paper No. IX	Probability Distribution I
11/09/2018	11.30 am to 12.30 pm	Paper No. X	Statistics Inference I
28/09/2018	11.30 am to 12.30 pm	Paper No. XI	Design of Experiments
06/09/2018	11.30 am to 12.30 pm	Paper No. XII	Operations Research

Nature of Question paper: Total 10 Marks

10 Multiple choice questions for one mark each

(Ms. Pattanshetti R. N.) HEAD DEPARTMENT OF STATISTICS VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

VIVEKANAND COLLEGE, KOLHAPUR. Department of statistics Internal Examination B.Sc.-III

Sub: Probability Distributions I

Date: 01/10/2018

Max marks: 10

01

Q. Select the correct alternatives:

Q1.	Ratio of two identical and independent	normal variates is			
11.12	a) Laplace	b) Log normal			
	c) Cauchy	d) Weibull			
02.	The first ordered raw moment μ_1 about the origin of the discrete random variable which follows				
85	truncated Poisson distribution with parameter m truncated at X=0 is				
	, m ²	b) $\frac{2}{2}$			
	a) $\frac{1-e^{-m}}{1-e^{-m}}$	^{-/} 1-e ^{-m}			
	c) $\frac{m}{1-r^{-m}}$	d)None of the above			
03.	If X follows Cauchy distribution with parameters (μ, λ) then quartile deviation is				
	a) $\mu - \lambda$	b) $\mu + \lambda$			
	c) µ	ζ(b			
04.	Laplace distribution is	1270.00			
	a) Positively skew	b) Negatively skew			
	c) Symmetric	 d) None of the above 			
O5.	If X has normal distribution with parameters μ and σ^2 then distribution of e^X is				
0.03655	a) Laplace	b) Log normal			
	c) Gamma	d) Cauchy			
Q6.	The mean of truncated binomial distribution with parameters n and p truncated at X=0 is				
	a)	b) $\frac{np^2}{2}$			
		i) 1-q ⁿ			
	c) npq	d) None of the above			
Q7.	If X has Weibull distribution with parameters α and β then $\left(\frac{x}{2}\right)^{\beta}$ has distribution				
	a) Standard exponential	b) $Exp(B)$			
	c) Gamma(11)	d) Both (a) and (c)			
08	Mean and variance of the truncated exponential distribution with parameter A truncated below at				
do.	X=a is	one man of a state of the state			
	a) 1 + 1 and 0	b) $a \pm \frac{1}{2}$ and $\frac{1}{2}$			
	$a) = + \frac{1}{\theta} a a d \theta$	$\theta = \theta =$			
	c) $a + \frac{1}{\theta}$ and θ^2	d) $a + \frac{1}{\theta}$ and θ			
Q9.	For which distribution mean and variance does not exist				
2	a) Laplace	b) Cauchy			
	c) Log normal	d) Weibull			
Q10.	The following is the p.m.f. of truncated	Poisson distribution truncated at X=0			
149.613	$P(X = x) = c \cdot \frac{e^{-\lambda} \lambda^x}{\lambda}, x = 1, 2, \dots$ Then value of c is				
	a) Å	1			
	c) 1-5-2	d) $1 - e^{-\lambda}$			
	19/-	in the			
	(S) E	SID C			
	(* (J	UNE)			
	× 1	964			
	19				
	TAP	UR - A			

v) The moment estimator of the parameter p in case of Binomial distribution based on a sample X1,X2,..Xn is $(b)\frac{x}{2}$ c) n \overline{X} d) $\frac{n}{2}$ a) \overline{X} ↓ vi) Let -2,0,8,1,-1,6,-3 be a r.s. of size 7 from $f(x, θ) = \frac{1}{2} e^{-|x-θ|}; -∞ < x < ∞$ Then MLE for θ is... . 610 d) 7 a) 9/7 c) 9 vii) If a family receives 1,0,2,3,2,4 wrong telephone calls on six randomly selected days, and wrong calls follow $P(\lambda)$ then the moment estimate of λ will be d) 3 c) 4 , b)2 a) 0 viii) The MLE of parameter θ based on the r. s. X₁, X₂,...,X_n is that value of θ which a) Maximizes the likelihood function b) Maximizes the information function c) Maximizes the distribution function d) None of these intersection is the sufficient estimator of the parameter λ of Poisson distribution based on a sample X₁, X₂, X₃ is given by (a) $X_1+X_2+X_3$ (b) $X_1+2X_2+X_3$ (c) $X_1+X_2+2X_3$ d)2X1+X2+X3 (x, x) Let X₁, X₂,, X_n be a random sample of size n taken from (x, y, b) population. Then sufficient JUNE estimator of b is ... stimator of b 15... a) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_1, x_2, ..., x_n)$ c) max $(x_1, x_2, ..., x_n)/n$ b) min $(x_$ k_{1}^{964} dymax $(x_1, x_2, \dots, x_n)^2$

VIVEKANAND COLLEGE, KOLHAPUR.

Department of Statistics

Designs of Experiments

Internal Examination

Date : 28/09/18

Roll No. 8686 Max marks : 10

10

Q.1 Choose a correct alternative

1) The number of replications in an experiment is based on ------

a) the precision required b) experiment material available

c) heterogeneity of experimental material (b) all the above

 A commonly used approach to test the significance of difference between pairs of means in design of experiment is ------

a) coefficient of variation b) critical difference c) standard difference d) error sum of squares
 3) The analysis of Completely randomized design is analogous to ANOVA for ------

a) one way classification b) two way classification c) both a) and b) d) ported these
 4) The Principle of repetition of treatments over the experimental material in sense of experiments is----

a) randomization (b) replication

c) both a) and b)

964

HAPUR . A160

5) In analysis of data of RBD with b blocks and v treatments, the error degrees of freedom are------

a) b(v-1) b) v(b-1) c) (b-1)(v-1) d) (b-1)(v-1)-1

6) ANOCOVA procedure is a combination of ------

analysis of variance and regression analysis
 both a) and b)

b) analysis of variance and correlation
 d) neither a) nor b)

7) In LSD number of rows is equal to ------

number of columns b) number of treatments (b) both a) and b) d) none of these
 8)) Suppose there are two designs d1 and D2 with replications r1 and r2 then efficiency of design D2 with respect to design D1 is-----

a) $6_{1/6_2}^2$ (b) $6_{2/6_1}^2$ c) 1 d) $6_{1-6_2}^2$

9) In analysis of RBD with usual notations the estimate of missing observation is -----

 $(x) \frac{T+rB-G}{(r-1)(t-1)} \qquad b) \frac{rT+tB-G}{(r-1)(t-1)} \qquad b) \frac{rT+tB-2G}{(r-1)(t-1)} \qquad d) \frac{tT+rB-2G}{(r-1)(t-1)}$ 10) In degrees of freedom for the error ion a Latin square **Destrin** with **Sortows**, 5 columns and 5 treatments with **one missing observation is**.... a) 22 b) 10 c) 12 $(x) \frac{r}{12} + \frac{r}{1964} + \frac{r}{196} + \frac{r}{1964} + \frac{r}{196} + \frac{r}{1964} + \frac{r}{196} + \frac{r}$

'জান যিজ্ঞান প্লাগি সুনানকাৰ বামাঠী খিম্বাগ দ্বমান' খিম্বাগনচর্মী ডাঁ.জাবুনী মান্দুরা 111541 126 Shri Swami Vivekanand Shikshan Sanstha's (Kolhapur) Roll No: VIVEKANAND COLLEGE, KOLHAPUR 010 Department of Statistics Sem V Paper XII (Shivaji University Internal Test) B.Sc III \$ Date- 06 Sep 2018 Time - 1.00 -1.15PM Max Marks 10 Select the correct answer from the given answers to each question and rewrite the sentences. 1] LPP is a technique of obtaining solution to a set of variables when the number of equations is ---- the number of variables: A S b)> c) = d) none of a,b & c 2) Any solution to general LPP which satisfies non negativity restrictions of LPP is called a] Optimum solution b] unbounded solution c) feasible solution d] Degenerate solution In LPP the number of slack variables is---- number of constraints of ≤type a) Less than b) More than c) equal to d) none of a, b &c 4] In Big-M method, -M in the objective function of the LPP is cost of a] Slack variable b/artificial variable c] surplus variable d] none of these 5] In simplex procedure, a basic solution may be ----- solution: -1 a) Optimum b) unbounded c) Degenerate d'All a,b &c In decision theory the alternatives of action and states of nature----i) Strategies are random (ii) States of nature are random (iii) Both are random (iv) neither are random In decision making under condition of uncertainty, Maximax criterion is also known as criterion of --- i) Pessimism (i) Optimism (iii) Equally likely (iv) regret 8] In decision theory EVPI is equal to ----i) EPPI-EOL (ii) EPPI-Max EMV (iii) EOL-EMV (iv) Max EMV-EOL 9] In decision making under condition of risk, EVM criterion is also known as---i) Savage Criterion (ii) Baye's Criterion (iii) Wald's Criterion (iv) Laplace Criterion i) equal to EVPI (ii) minimum regret (iii) equal to EMV (iv) (iv) The minimum expected opportunity loss (EOL) is -----ESTD GE 5 JUNE 1964 HAPUR . ATEO

Date: 02/02/2019

All students of B.Sc. I are hereby informed that, there will be an Internal Examination On 9th February, 2019 at 2.00 pm in Room No. 41. 3 25th february 2019

Haur John Subject Teacher

...

-

918-Ð " ज्ञान, दिज्ञान आणि सुर्सल्कार वांसाठी शिक्षण प्रसार "Signature of - शिक्षणमहर्षी डॉ. बायूजी साबुंखे Supervisor Shri Swami Vivekanand Shikshan Sanstha's VIVEKANAND COLLEGE (Autonomous), KOLHAPUR Roll No. 7700 Class B. Sc I Div A ____ Subject _____ Statistics Suppliment No. _____T Test/Tutorial No. Internal Examination Q. Choose the coursed alternative. " Extension of Bernauli Distribution is ... distribution. is Uniform iii Binomial iii Mypergeometric in) Jwo - point. ii) Binomial . 2) With usual notations what is an interpretation of N in hypergeometric distribution. iij Random Variable is dot size iii) Sample size in None of these - i) dot size. 3) For Binomial distribution i) Mean = Variance ii) Mean < Variance iii) Mean > Variance iv) None of these iii) Mean > Variance 4) Iq Var (x)=0 theo i) X has one point distribution. ii) × takes only any single value SUDNAND CO iii) Only is or ii) iv) Bolk is and ii) ESTD JUNE in Both is and ii) APUR

 $= \int \frac{1}{2} \frac{districte r \cdot v \cdot X}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot v \cdot x}{p(x)} + \int \frac{1}{2} \frac{districte r \cdot x}{p(x$ then k is i) 1/4 iii) 1/3 iii) 1/5 iv) 1 in 1/5 e) Iq x and Y are two independent r.v. such as XNB (n=5, p=0.2) and YNB (n=7, p=0.2) then Z= X+Y has binomial distribution with ... parameter i) (5,0.2) ii) (7,0.2) iii) (12,0.2) iv) (12,0.4) - iii) (12, 0.2) 7) Ig for a r.u. X probability of X is P(X=c)=1 then X Jollows ... distribution . i) Bernauli ii) Binomical iii) Discrete uniform iv) Jwo-point iii) Discrete uniform 8) The height of a person, time, temperature etc. are examples of ... I.V. ii) Continuous i) Disorete iii) Both i) and ii) ivy None of these - iii) Both i) and ii) 9) Iq XNB (10,0.8) Then distribution of (10-X) is ... i) Binomial (10, 0.2) (INAND Ci) Binomial (10, 0.8)iii) Binomial (8, 0.8) (ESTD in Binomial (8, 0.2)JUNE ii) Binomial (10,0.8) PAUR . A16

10) Mean of Hypergeometric distribution with parameters (N, M, n) is ארח נאי רחת נייי ריו אחת ניי אחת ני - i) ____ /N Q. Jill in the gap -1) Ig for a Binomial distribution n=8, p= 1/2 then Variance 13 2 2) For a Bernauli distribution mean is always greater than variance. e) A distribution in which the probability at each draw remains /n is called <u>discrete</u> uniform distribution. 4) For Bernauli distribution with parameter p=0.5 than mean is <u>0.5</u> 5) The number of successes in a series on n independent Bernauli trials 15 P Didipirar 6) If X has hypergeometric probability distribution with parameters (N, M, n) the minimum and maximum possible val X are max {m3 and min {n} }

If X is a one-point distribution with P(x=k) = 1 and $P(x \neq k) = 0$ then its probability generating Junction is 3^{k} 8) Iq X1 and X2 are two Bernauli variates then X1 + X2 is a Binomial variate. 9) In a Binomial variate the probability of success in each trial is same or equal. 10) If $P(x=x) = \frac{1}{4}$ where 2, 3, 4 then mean of x is 5.12 is ESTD in JUNE + 1964 8

(5) BSOI Internal Examination 2018-19 (sem-II) Date: 12/01/2019 G. Choose the could allunative. is to pass the second second 1> 16 dhore exists perfect cosel" bet x 5 7 dhen a) o b) 1 c) -1 d) -1 oc +1 2) The kael Peasson's cosal" coelli is of egg. coephi and a situation of all in a) A.M. b) H.M. c)-G M. d) Median the back and a star and ballered a 3) Expenditure on Advertisement of scale have.... a) the cosel" b) the cosel" c) fastect the cosel" d) No coul? 4> 16 the vociables x 5 7 changes in same direction then cor (x, y) is ... a) 2000 b) one c) Positive d) Negative. s> 11 × 1 × 1 × are independent variables then

- $(or(X,Y) = \cdots$

a) 0 b) 1 c) -1 d) none of there.

a) a b) 1 c) -1 d) -1≤€≤1

7) 15 dhe eqn of the dwo eegue lines are 4x-3y=224 2X-Y=16, then the correst mean value of XY is... a) X=10, Y=13c) X=26, Y=5For mean value of XY is... ESTD X=13, Y=10JUNE of these.

11.13 er The two regension reg? intosect at ... 0) (0,0) b) (X, Y) c) (byr, b2y) d) (0, Y) will to be the theory how we are do as 9) 11 by = -114 f by = -1 dhen conceletion coefficie (E) - is ... a) 1/4 b) -1/4 c) $-\frac{1}{2}$ d) -1/210> 15 the doo variables are uncorrelated then dhe doo lines of sequestion are.... a) Parallel to each other b) Perpendicular to each other c) coinside - with each other. d) show of there. ESTD The a set to back and the proand the second second AN 28 16 18 1 Sec. 1. a de la factoria de la sectoria de la se and the second 1.75 the set of an an article setting and the set of the

Vivekanand College, Kolhapur (Autonomous) Department of Statistics Internal Examination (2018-19) Notice

Date: 06/02/2018

All the students of B.Sc. III are hereby informed that, the internal examination of semester VI will be held as per following time table.

Date	Time	Paper No.	Title of the Paper	
18/02/2019	1:00 pm to 1:15 pm	Paper No. XIII	Probability Theory	
15/02/2019	1:00 pm to 1:15 pm	Paper No. XIX	Statistics Inference II	
14/02/2019	1:00 pm to 1:15 pm	Paper No. XV	Sampling Theory	
13/02/2019	1:00 pm to 1:15 pm	Paper No. XVI	Quality Management and Data Mining	

Nature of Question paper: Total 10 Marks

10 Multiple choice questions for one mark each

100 (Ms. Pawar V. V.) HEAD DEPARTMENT OF STATISTICS VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

80 VIVEKANAND COLLEGE KOLHAPUR DEPARTMENT OF STATISTICS MID-TERM EXAMINATION (Semester II) Roll No: 8686 Paper- Probability Theory (XIII) Date: 18/02/2019 Q.1 Choose the correct alternative. [10] 1) Let $\{X_n, n \ge 1\}$ be a sequence of random variable with $p(X_n=0)=1-1/n$, $p(X_n=1)=1/n$ then b) $Xn \xrightarrow{2} 2$ $(c) Xn \xrightarrow{2} 0$ a) $Xn \rightarrow 1$ d) None of these. A sequence of random variable {Xn, n≥1} is said to converge in distribution function to x if----a) $\lim_{n\to\infty} Fn(x) = 1$ b) $\lim_{n\to\infty} F(x) = 0$ $\dim_{n\to\infty} Fn(x) = F(x)$ c) $\lim_{n\to\infty} Fn(x) = 0$ 3) If X₁,X₂,.....X_n are i.i.d. random sample drawn from population with mean µand finite variance σ2 then WLLN states-----a) $Xn \xrightarrow{p} \mu$, b) $\overline{Xn} \xrightarrow{p} \mu$ c) $Xn \xrightarrow{p} \overline{\mu}$ d) $\overline{Xn} \xrightarrow{p} \overline{\mu}$ Where, $\overline{\mu} = \frac{1}{n} \sum \mu i$ If X1, X2, X3 is random sample from U(0,1) then sample range follows ----a) $\beta_2(2,2)$ b) $\beta_1(2,2)$ c) \$2 (1. m NAND d) \$1 (1,n) 5) If X1, X2 are independent exponential virial swith thean 1 and 2 then p[min{X1,X2} >1] is ---b)e-3 -1.5 JUNE 1964 APUR - 4160

(6) If X₁, X₂, X₃ is random sample from U(0,1) distribution then expected value of second order statistic is ----b) 0.4 b)0.6 d) 0.1 (1) If P=(Pij) is the t. p. m. then state j is recurrent if ------ $(p) \sum_{n=0}^{\infty} P_{jj}^{n} = 1 \quad b) \sum_{n=0}^{\infty} P_{jj}^{n} < \infty \quad c) \sum_{n=0}^{\infty} P_{jj}^{n} > \infty \quad d) \sum_{n=0}^{\infty} P_{jj}^{n} = \infty$ 8) Which of the following is not order statistics..... sample mean b) min $\{X_1, \dots, X_n\}$ c) max $\{X_1, \dots, X_n\}$ d) sample median 9) $Xn \xrightarrow{p} a$ where a>0 then a) $Xn^2 \xrightarrow{p} a^2$ b) $\frac{1}{xn} \xrightarrow{p} \frac{1}{a}$ c) $Xn - a \xrightarrow{p} 0$ (All of these \mathcal{M}) A stochastic process {X_n, n≥1} where random variable X_n is number of sixes in first n throws of a die is----a) Continuous time, Continuous b)Continuous time, discrete state space c) Discrete time, Continuous stare space Discrete time, Discrete state space JUNE 1964 APUR . A

Vivekanand College, Kolhapur. Internal Examination 2018-19, Sem- II Sub: Sampling Theory (Statistics) Paper- XV

Date: 14/02/2019

Roll No: 9691.

19:0 4-

1) The probability of not selecting a specified unit in SRSWOR of 5 units from population of 50 units is

ATF-6/66 None of these. c) 5/50 b) 1-1/5 a) 1/5

 If number of units in the population is not integral multiple of sample size, the systematic sampling is called --Circular systematic sample a) simple systematic sample

c) linear systematic sample

d) none of these

3) For large population with population S², confidence coefficient (1- α) and margin of error d, the size of sample under SRSWOR is

c) $z_{\alpha/2}^2 S^2/2d^2$ 2 Za/ S2/d2 d) none of these b) $z_{a/2}^2 / S^2 d^2$

4) Which of the following statement is true?

ANAND b) $V_{SRSWOR} \ge V_{opt} \ge V_{prop}$ VSRSWOR ≥ Vprop ≥ Vopt d) $V_{SRSWOR} \ge V_{prop} \le V_{opt}$ c) $V_{SRSWOR} \le V_{prop} \le V_{opt}$ ESTD 5) Under proportional allocation, the size of sample from each stratum depends on *-1964 d) neithe

6) If population size is N and sample of n is drawn from it $(f = \frac{n}{N})$ then finite population correction is -----. b) 1-f SAL d) none of these c) 1+f 7) In sampling from proportion, if sample is drawn by without replacement then var(p) is $\sqrt{n} \frac{N-n}{N-1} \frac{PQ}{n} \qquad b) \frac{N-n}{N} \frac{PQ}{n} \qquad c) \frac{N+n}{N-1} \frac{PQ}{n} \qquad d) \frac{N-n}{N-1} \frac{PQ}{n-1}$ 8) Systematic sampling will yield better results only if the units within the same sample are by Heterogeneous c) all equal a) Homogeneous d) none of these 9) If the population consists of linear trend then variance of stratified, systematic and SRSWOR are in the proportion of--

(a) 1: n: $\frac{1}{n}$ b) n: 1: $\frac{1}{n}$ c) n: $\frac{1}{n}$: 1 \sqrt{d} $\frac{1}{n}$: 1: n

10) In linear Systematic sampling N= 40 and not have probability of drawing any systematic sample is a) $\frac{1}{40}$ b) $\frac{39}{40}$ b) \frac{39}{40} b) $\frac{39}{40}$ b) $\frac{39}{40}$ b) \frac{39}{40} b) $\frac{39}{40}$ b) \frac{39}{40} b) $\frac{39}{40}$ b) \frac{39}{40} b) \frac{39}{40} b) $\frac{39}{40}$ b) \frac{39}{40} b) \frac{39}{40 JUNE 1964 APUR - 41600

VIVEKANAND COLLEGE, KOLHAPUR. Department of statistics

Internal Examination

Sub: Quality Management and Data Mining (Paper: XVI)

10

Max marks:10 Date: 13/02/19 Q. Attempt the following questions a) The quality of the product means i) Degree of brightness (ii) Fitness for use iii) Degree of perfection at any cost iv) None of them b) Which of the following are the memory chart (v) Both i) and iii) iii) EWMA i) CUSUM ii) Shewhart c) Which of following tools are useful in 'analyze and improve' step of DMAIC cycle? iv) Pareto chart iii) Scatter diagram i) Histogram (ii) Cause and effect diagram d) The word PDCA stands for None of them iii) Both i) and ii) i) Plan Do Control Act ii) Plan Do Control Analyze e) Which of the following are not phases DMAIC methodology ii) Analyse (ii) Act iv) Measure i) Define f) If lot is accepted on the basis of sampling inspection plan then ASN= ATL II) ASN<ATI III) ASN> ATL IV) None of them g) Producers risk is also called as iv) None of them Type I error ii) Power iii) Type II error h).For CUSM chart the value of the K is chosen as $m_{\mu_0} - \mu_1 |/2 \text{ ii}| |\mu_0 + \mu_1 |/2 \text{ iii}| |\mu_1 |/2$ iv) Both i) and ii) i).In three sigma limits the probability of producing a product within specification is LANAND CO 00.9973 iv) 0.9975 ii) 0.0027 iii) 0.027 For single sampling plan the value of average total inspection (AVI) ESTD JUNE i) p*P, (ii) n+(N-n) *(1-P_) iii) n iv) n1+n2*(1-Pa) 1964 APUR - A ASN 5 D.

n+(N-n)(1-Pa) - n