Vivekanand College, Kolhapur (Autonomous)
 Department of Statistics
 Internal Examination (2018-19)
 Notice

Date: 01/09/2018
All the students of B.Sc. III are hereby informed that, the internal examination of semester V will be held as per following time table.

Date	Time	Paper No.	Title of the Paper
$01 / 10 / 2018$	$1: 00 \mathrm{pm}$ to $1: 15 \mathrm{pm}$	Paper No. IX	Probability Distribution I
$11 / 09 / 2018$	11.30 am to 12.30 pm	Paper No. X	Statistics Inference I
$28 / 09 / 2018$	11.30 am to 12.30 pm	Paper No. XI	Design of Experiments
$06 / 09 / 2018$	11.30 am to 12.30 pm	Paper No. XII	Operations Research

Nature of Question paper: Total 10 Marks
10 Multiple choice questions for one mark each

N
HEAD
DEPARTMENT OF STATISICS YNEKANAND COLEGE NOUKAPUR (AUTONOMOUS)

VIVEKANAND COLLEGE, KOLHAPUR
 Department of statistics
 Internal Examination B.Sc.-III
 Sub: Probability Distributions I

Max marks: 10
Q. Select the correct alternatives:

Q1. Ratio of two identical and independent normal variates is
a) Laplace
b) Log normal
c) Cauchy
d) Weibull

Q2. The first ordered raw moment μ_{1}^{\prime} about the origin of the discrete random variable which follows truncated Poisson distribution with parameter m truncated at $X=0$ is
a) $\frac{m^{2}}{1-e^{-m}}$
b) $\frac{2}{1-e^{-m}}$
c) $\frac{m}{1-q^{-m}}$
d) None of the above

Q3. If X follows Cauchy distribution with parameters (μ, λ) then quartile deviation is
a) $\mu-\lambda$
b) $\mu+\lambda$
c) μ
d) λ

Q4. Laplace distribution is
a) Positively skew
b) Negatively skew
c) Symmetric
d) None of the above

Q5. If X has normal distribution with parameters μ and σ^{2} then distribution of e^{x} is
a) Laplace
b) \log normal
c) Gamma
d) Cauchy

Q6. The mean of truncated binomial distribution with parameters n and p truncated at $X=0$ is
a) $\frac{n p}{1-q^{n}}$
b) $\frac{n p^{2}}{1-q^{n}}$
c) $n p q$
d) None of the above

Q7. If X has Weibull distribution with parameters α and β then $\left(\frac{x}{a}\right)^{\beta}$ has \qquad distribution
a) Standard exponential
b) $\operatorname{Exp}(\beta)$
c) Gamma(1,1)
d) Both (a) and (c)

Q8. Mean and variance of the truncated exponential distribution with parameter θ truncated below at $\mathrm{X}=\mathrm{a}$ is
a) $\frac{1}{a}+\frac{1}{\theta}$ and θ
b) $a+\frac{1}{\theta}$ and $\frac{1}{\theta^{2}}$
c) $a+\frac{1}{\theta}$ and θ^{2}
d) $a+\frac{1}{\theta}$ and θ

Q9. For which distribution mean and variance does not exist
a) Laplace
b) Cauchy
c) Log normal
d) Weibull

Q10. The following is the p.m.f. of truncated Poisson distribution truncated at $\mathrm{X}=0$ $P(X=x)=c \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}, x=1,2, \ldots \ldots$. Then value of c is
a) λ
c) $\frac{1}{1-e^{-\lambda}}$

SHRI SWAMI VIVEKANAND SHIKSHAN SANSTHA'S

 VIVEKANAND COLLEGE, KOLHAPUR.B. SC. (Part - III) Midterm Examination, 2018 STATISTICS (Paper -X)
Roll No.: Statistical Inference-I
Day and Date: $11 \mid 09 / 2018$
Q. Choose the correct alternative.
i) The estimator $\frac{\sum x}{n}$ of population mean is:
a) an unbiased estimator
b) a consistent estimator
c) Both (a) \& (b)
d) neither (a) nor (b)
ii) A sequence of estimator Tn will be consistent for θ if:
a) $\mathrm{E}(\mathrm{Tn})=0$ \& V(Tn) $\rightarrow 0$ as $\mathrm{h} \rightarrow \infty$ b) $\mathrm{E}(\mathrm{Tn}) \rightarrow \theta \& \mathrm{~V}(\mathrm{Tn}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
c) Both (a) \& (b)
d) Neither (a) nor (b)
iii) If a statistic T is an unbiased estimator of the parameter θ, then
a) $\operatorname{MSE}(T)=0$
b) $\operatorname{MSE}(T)=V(T)$
c) $\operatorname{MSE}(T)>V /$ P 2 NO
d) $\operatorname{MSE}(\mathrm{T})<\mathrm{V}(\mathrm{T})$
iv) Bias of an estimator can be:
a) Positive
b) negative

v) The moment estimator of the parameter p in case of Binomial distribution based on a sample $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ is
a) \bar{X}
b) $\frac{\bar{x}}{n}$
c) $\mathrm{n} \bar{X}$
d) $\frac{n}{\bar{X}}$
vi) Let $-2,0,8,1,-1,6,-3$ be a r.s. of size 7 from $f(x, \theta)=\frac{1}{2} e^{-|x-\theta|} ;-\infty<x<\infty$ Then MLE for θ is...
a) $9 / 7$
b) 0
c) 9
d) 7
vii) If a family receives $1,0,2,3,2,4$ wrong telephone calls on six randomly selected days, and wrong calls follow $P(\lambda)$ then the moment estimate of λ will be
a) 0
b) 2
c) 4
d) 3
viii) The MLE of parameter θ based on the r.s. $X_{1}, X_{2}, \ldots . X_{n}$ is that value of θ which
a) Maximizes the likelihood function
b) Maximizes the information function
c) Maximizes the distribution function
d) None of these
ix) The sufficient estimator of the parameter λ of Poisson distribution based on a sample X_{1}, X_{2}, X_{3} is given by
a) $X_{1}+X_{2}+X_{3}$
b) $\mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3}$
c) $X_{1}+X_{2}+2 X_{3}$
d) $2 \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}$

VIVEKANAND COLLEGE ,KOLHAPUR. Department of Statistics Designs of Experiments Internal Examination

Date : $28 / 09 / 18$
Q. 1 Choose a correct alternative

1) The number of replications in an experiment is based on
a) the precision required
b) experiment material available
c) heterogeneity of experimental material
(d) all the above
2) A commonly used approach to test the significance of difference between pairs of means in design of experiment is \qquad
a) coefficient of variation b) critical difference c) standard difference d) error sum of squares
3) The analysis of Completely randomized design is analogous to ANOVA \qquad
a) one way classification
b) two way classification
c) both a) and b)
4) The Principle of repetition of treatments over the experimental material
a) randomization
b) replication
c) both a) and b)

5) In analysis of data of RBD with b blocks and v treatments, the error degrees of freedom are--.....
a) $\mathrm{b}(\mathrm{v}-1)$
b) $\mathrm{v}(\mathrm{b}-1)$
c) (b-1)(v-1)
d) $(b-1)(v-1)-1$
6) ANOCOVA procedure is a combination of $-\ldots-$
(a) analysis of variance and regression analysis
b) analysis of variance and correlation
c) both a) and b)
d) neither a) nor b)
7) In LSD number of rows is equal to-.
A) ${ }^{20}$ number of columns
b) number of treatments
c) both a) and b)
d) none of these
8)) Suppose there are two designs d 1 and D2 with replications r 1 and r 2 then efficiency of design D2 with respect to design D1 is-....
∞
a) $6_{1 /}^{2}, 6_{2}^{2}$
(b) $\sigma_{2}^{2}, 6_{1}^{2}$
c) 1
d) $6^{2}{ }_{1}-6_{2}^{2}$
9) In analysis of RBD with usual notations the estimate of missing observation is
---.
10) $\frac{t+r+C-G}{(r-1)(t-1)}$
b) $\frac{r T+t B-G}{(r-1)(t-1)}$
$=\frac{n T+t B-2 G}{(r-1)(t-1)}$
d) $\frac{t T+r \theta-2 G}{(r-1)(t-1)}$
11) In degrees of freedom for the error ion a Latin square dos in with one missing observation is-...
a) 22
a) 22 b) 10
b) 10

ESTD
 Shri Swami Vivekanand Shikshan Sanstha's (Kolhapur)

VIVEKANAND COLLEGE, KOLHAPUR

Department of Statistics

Date- 06 Sep 2018
B.Sc III Sem V Paper XII (Shivaji University Internal Test)

Time-1.00-1.15PM

Select the correct answer from the given answers to each question and rewrite the sentences.

1] LPP is a technique of obtaining solution to a set of variables when the number of equations is the number of variables: b) \leq b) $\geq \quad$ c) $=$ d) none of a, b \& c
2) Any solution to general LPP which satisfies non negativity restrictions of LPP is called
a] Optimum solution b] unbounded solution ch feasible solution d] Degenerate solution
3) In LPP the number of slack variables is--- number of constraints of \leq type
a) Less than b) More than sj equal to d) none of a, b \&c

4] In Big-M method, -M in the objective function of the LPP is cost of a] Slack variable by artificial variable c] surplus variable d] none of these
5] In simplex procedure, a basic solution may be ----- solution:
a) Optimum
b) unbounded
c) Degenerate \& \downarrow All abb \&c

6] In decision theory the alternatives of action and states of nature---
i) Strategies are random (ij)States of nature are random (iii) Both are random (iv) neither are random

7] In decision making under condition of uncertainty, Maximax criterion is also known as criterion of -- i) Pessimism (ii) Optimism (iii) Equally likely (iv) regret
8] In decision theory EVPI is equal to
i) EPPI-EOL (jii)EPPI-Max EMV
(iii) EOL-EMV
(iv) Max EMV-EOL

9] In decision making under condition of risk, EVM criterion is also known as---
i) Savage Criterion (iii) Bays's Criterion (iii) Wald's Criterion (iv) Laplace Criterion

10] The minimum expected opportunity loss (EOL) is
i) equal to EVPI (ii) minimum regret (iii) equal to EMV

Vivekanand College, Kolhapur
 Department of Statistics
 Notice
 B. Sc. I

Date: 02/02/2019

All students of B.Sc. I are hereby informed that, there will be an Internal Examination On $9^{\text {th }}$ February, 2019 at 2.00 pm in Room No. 41.
$425^{\text {th }}$ february 2019

Subject Teacher

Vauser

Head of the Department
meac

Department of Statistic:
\qquad Roll No. 7700

Suppliment No. \qquad
\qquad Statistics

Test/ Tutorial No. Intornof -examination
Q. Choose the correct alternative.

1) Extension of Bernoulli Distribution is ... distribution.
i) Uniform
ii) Binomial
iii) Mypergeometric
(w) Jwo-point.
\rightarrow ii) Binomial
\because 2) With usual notations what is an interpretation \&f N in hypergeomatric distribution.
i) Lot size
ii) Random Variable
iii) Sample size
iv) None of these
\rightarrow i) Lot size.
2) For Binomial distribution
i) Mean $=$ Variance
ii) Mean \leqslant Variance
iii) Mean \geqslant Variance
ii) None of there
\rightarrow iii) Mean \geqslant variance
3) If $\operatorname{var}(x)=0$ then
i) x has one point distribution.
i) x takes only any single value.
iii) Only i) or ii)
iv) Both is and ii)
\rightarrow ii) Both is and ii)

\Rightarrow If discrete r.U. X has following p.mf.

$$
P(x)=\left\{\begin{array}{lll}
k & ; & \text { if } x=0,1,2,3,4 \\
0 & ; & 0 w
\end{array}\right.
$$

then k is
i) $1 / 4$
ii) $1 / 3$
iii) $1 / 5$
iv) 1
\rightarrow iii) $1 / 5$
6) If x and y are two independent $r \cdot u$. Such as $x \sim B\left(n_{1}=5, p=0.2\right)$ and $y \sim B\left(n_{2}=7, p=0.2\right)$ then $Z=x+y$ has binomial distribution with ... parameter i i) $(5,0.2)$
ii) $(7,0.2)$
iii) $(12,0.2)$
iv) $(12,0.4)$
\rightarrow iii) $(12,0.2)$
7) If for a ru. x probability of x ie $P(x=c)=1$ then x follows ... distribution.
i) Bernauli
ii) Binomial
iii) Discrete uniform iv) Jwo-point.
\rightarrow iii) Discrete uniform
8) The height of a person, lime, temperature eke. are examples \& \& ... rv.
i) Discrete
ii) Continuous
iii) Both
i) and ii)
iv) None of these
\rightarrow iii) Both i) and ii)
9) If $x \sim B(10,0.8)$ then distribution of $(10-x)$ is i) Binomial $(10,0.2)$
iii) Binomial $(8,0.8)$
\Rightarrow ii) Binomial $(10,0.8){ }^{+} \div{ }_{1964}$
10) Mean of Mypergeometric diswibution with parameters (N, M, n) is...
i) $n m / \mathrm{N}$
ii) nN / m
iii) MM
iv) MN
\longrightarrow i) $\underline{n M / N}$
Q. Fill in the gap -

1) If for a Binomial distribution $n=8, p=1 / 2$ then variance is 2
2) For a Bernauli distribution mean is always greater than variance.
3) A distribution in which the probability at each draw remains $1 / n$ is called discrete uniform distribution.
4) For Bernauli distribution with parameter $p=0.5$ than mean is 0.5
5) The number of successes in a series on n independent Bernawli trials is P variable
6) If x has hypergeometric probability distribution with parameters (N, M, n) Ales the minimum and maximum possible $\max \{M\}$ and $\min \{n\}$

7) If x is a one -point distribution with $P(x=k)=1$ and $P(x \neq k)=0$ then its probabiling generating function is g^{k}
8) If x_{1} and x_{2} are hoo Bernawli variates then $x_{1}+x_{2}$ is a Binomial variate.
9) In a Binomial variate the probability of success in each trial is same or equal.
10) If $P(x=x)=1 / 4$

$$
\operatorname{oof}_{b}^{b} x \text { is } 5 / 2
$$

BsoI
Internal Examination 2018.19 (Sem-II)
Date: $12 / 01 / 2019$
Q. Choose the cord alsunative.

1) If there exists pabect cost ${ }^{n}$ bet $\times s y$ then coelfir $\left(\begin{array}{ll}\text { a }\end{array}\right.$
a) 0
b) 1
c) -1
d) $-100+1$
2) The kaed Pearson's cosel" coli. is.... of eng. wobbly.
a) $A \cdot M$
b) $\mathrm{H}+\mathrm{HI}$.
c) $-G n$
d) Median
3) Expenditure on Adreetisement of scale have....
a) the coset?
b) -re coal ${ }^{n}$
c) Patect -re coil"
d) No cont.
4) it the variables $x ; y$ changes in same direction then cor (x, y) is...
a) 200
b) one
c) Positive
d) Negative.
5) it x, y are independent variables then $\operatorname{cor}(x, y)=\ldots$.
a) 0
b) 1
C) - 1
d) none of there.
6) If the angle between two eeg lines is 90° then the con ln cocci. between two variable is...
a) 0
b) 1
C) -1
d) $-1 \leqslant \varepsilon \leqslant 1$
7) If the eq of the two eegie lines we $4 x-9 y=22$
\& $2 x-y=16$, then then mean value of x i y is...
a) $x=10, y=13$
c) $\bar{x}=26, \bar{y}=5$

$$
\bar{x}=13, \quad \bar{y}=10
$$

None of these.
8) The two egression eqn intorsect at ...
a) $(0,0)$
b) (\bar{x}, \bar{y})
c) (byy, bxy)
d) $(0, \bar{y})$
9) 11 by $=-1 / 4 \& b x y=-1$ then corzelation coelti (t) is ...
a) $1 / 4$
b) $-1 / 4$
C) $\frac{1}{2}$
d) $-1 / 2$
10) It the doo variables are uncorvelated then the dwo lines of reguession are..
a) Paralld to each othee
b) Peependiculae to each other
c) coinside with each other.
d) Flone of these.

Vivekanand College, Kolhapur (Autonomous)
 Department of Statistics
 Internal Examination (2018-19)
 Notice

Date: 06/02/2018
All the students of B.Sc. III are hereby informed that, the internal examination of semester VI will be held as per following time table.

Date	Time	Paper No.	Title of the Paper
$18 / 02 / 2019$	$1: 00 \mathrm{pm}$ to $1: 15 \mathrm{pm}$	Paper No. XIII	Probability Theory
$15 / 02 / 2019$	$1: 00 \mathrm{pm}$ to $1: 15 \mathrm{pm}$	Paper No. XIX	Statistics Inference II
$14 / 02 / 2019$	$1: 00 \mathrm{pm}$ to $1: 15 \mathrm{pm}$	Paper No. XV	Sampling Theory
$13 / 02 / 2019$	$1: 00 \mathrm{pm}$ to $1: 15 \mathrm{pm}$	Paper No. XVI	Quality Management and Data Mining

Nature of Question paper: Total 10 Marks
10 Multiple choice questions for one mark each

(Ms. Pawar V. V.)
HEAD
DEPARTMENT OF STAMSITS VIVEANAND COLLEGE, KOUMPUR (AUTONOMOUS)

Q. 1 Choose the correct alternative.

1) Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variable with $p\left(X_{n}=0\right)=1-1 / n, p\left(X_{n}=1\right)=1 / n$ then
a) $X n \xrightarrow{2} 1$
b) $X n \stackrel{2}{\rightarrow} 2$
(c) $X n \xrightarrow{2} 0$
d) None of these.
2) A sequence of random variable $\left\{X_{n}, n \geq 1\right\}$ is said to converge in distribution function to x if.....
a) $\lim _{n \rightarrow \infty} F n(x)=1$
b) $\lim _{n \rightarrow \infty} F(x)=0$
c) $\lim _{n \rightarrow \infty} F n(x)=0$
d) $\lim _{n \rightarrow \infty} F n(x)=F(x)$
3) If $X_{1}, X_{2}, \ldots \ldots X_{n}$ are i.i.d. random sample drawn from population with mean μ and finite variance σ^{2} then WLLN states -..........
a) $X n \xrightarrow{p} \mu \quad$ b) $\frac{p}{n} \xrightarrow{p} \mu$
c) $X n \xrightarrow{p} \bar{\mu}$
d) $\overline{X n} \xrightarrow{p} \bar{\mu}$ Where, $\bar{\mu}=\frac{1}{n} \sum \mu \mathrm{i}$

a) $\beta_{2}(2,2)$
4) If X_{1}, X_{2} are independent exponentinsyriagswith
5) If $\mathrm{X}_{1+}, X_{2}, X_{3}$ is random sample from $\mathrm{U}(0,1)$ distribution then expected value of second order statistic is
b)
0.4
b) 0.6
20).5
d) 0.1
6) If $\mathrm{P}=\left(\mathrm{Pij}_{\mathrm{i}}\right)$ is the $\mathrm{t} . \mathrm{p}, \mathrm{m}$. then state j is recurrent if \qquad
(a) $\sum_{n=0}^{\infty} P i j j^{n}=1$
b) $\sum_{n=0}^{\infty} P_{j j}^{n}<\infty$
c) $\sum_{n=0}^{\infty} P j j^{n}>\infty$
d) $\sum_{n=0}^{\infty} P j j^{n}=\infty$
-8) Which of the following is not order statistics. \qquad
sample mean
b) $\min \left\{X_{1}, \ldots X_{n}\right\}$
c) $\max \left\{X_{1}, \ldots . X_{n}\right\}$
d) sample median
7) $X n \xrightarrow{p} a$ where $a>0$ then
a) $X n^{2} \xrightarrow{p} a^{2}$
b) $\frac{1}{x \pi} \xrightarrow{p} \frac{1}{a}$
c) $X n-a \xrightarrow{p} 0$
(4) All of these
8) A stochastic process $\left\{X_{n}, n \geq 1\right\}$ where random variable X_{n} is number of sixes in lirst n throws of a die is--....
a) Continuous time, Continuous b 5 AND Continuous time, discrete state space
c) Discrete time, Continuous stape spagTD

VIVEKANAND COLLEGE, KOLHAPUR.

B. Sc. (Part - III) Midterm Examination, 2019

STATISTICS (Paper -XIV) Statistical Inference-II

1. Choose the correct alternative.
i) Formula for the confidence interval for ratio of variances of two normal populations involves \qquad
a) Chi square distribution
b) F distribution
c) t - distribution
d) Normal distribution
-ii) A sample of size 64 from $N(\mu, 16)$ gives the sample mean 20 then 95% C.I. for μ is:
a) $(19.20,20.98)$
b) $(19.12,20.99)$
c) (19.02, 20.98)
d) $(19.02,20.89)$

Lis
iii) The difference between upper \& lower limits of a confidence interval of level ($1-\alpha$) is known as
a) level of significance b) Length of C.I.
c) Confidence coefficient
d) Confidence limits
IV) The quantities C1\& C2 within which the unknown value of the parameter is expected to lie such that $\mathrm{P}(\mathrm{C} 1<\theta<C 2)=1-\propto$ are known as
a) Confidence limits
b) C.I.
c) Confidence coefficient
d) confidence levels
(\forall) The probability of rejecting the null hypothesis when it is true is called as
a) P - value
b) Size of the test
c) Power of the test
d) Type II error
yi) Which of the following is most appropriate for testing simple H_{0} against simple H_{4}.
a) UMP level a test exists
b) NiP level α test exists
c) UMP level $(1-\alpha)$ test exists
d) MP level $(1-a)$ test
yii) If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{n}$ is a r.s. of size n taken from $\mathrm{N}(\theta, 100)$ population a UMP test exists for testing $\mathrm{H}_{0}: \theta=\theta_{0}$ against
a) $\mathrm{H}_{1}: \theta \neq \theta_{0}$
b) $\mathrm{H}_{1}: \theta>\theta_{0}$
c) $\mathrm{H}_{1}: \theta<\theta_{0}$
(d) Either (ii) or (iii)
viii) The theory of SPRT is developed by........
a) Wald
b) Fisher
c) Neyman
d) Pearson NNAND
ix) In a SPRT of strength (α, β)
a) Sample size is fixed, $\alpha \& \beta$ are minimized
b) Sample size \& α are fixф 4) is R(3inize n
c) Sample size \& β are fixed, α is minimized
(d) Sample size is random, $t=\beta$ deffiged

SPRT of sire $(0.5,0.2)$ the stopping bound
a) $A=1.6, B=0.4$
b) $\mathrm{A}=1.5, \mathrm{~B}=0.4$
c) $\mathrm{A}=1.6, \mathrm{~B}=0.5$
d) $\mathrm{A}=0.5, \mathrm{~B}=0.8$

Vivekanand College, Kolhapur.

Sub: Sampling Theory (Statistics)
Paper- XV
Date: 14/02/2019
Roll No: 8691.

1) The probability of not selecting a specified unit in SRSWOR of 5 units from population of 50 units is
a) $1 / 5$
b) $1-1 / 5$
c) $5 / 50$
d) F-6i66 None of these.
2) If number of units in the population is not integral multiple of sample size, the systematic sampling is called --
a) simple systematic sample

c) linear systematic sample

d) none of these - $)$ circular systematic sample
3) For large population with population S^{2}, confidence coefficient (1- α) and margin of error d, the size of sample under SRSWOR is

- a) $z_{\alpha / 2}^{2} S^{2} / d^{2}$
b) $z_{\alpha / 2}^{2} / \mathrm{S}^{2} \mathrm{~d}^{2}$
c) $z_{\alpha / 2}^{2} S^{2} / 2 d^{2}$
d) none of these
- 4) Which of the following statement is true?
- $V_{\text {SRSWOR }} \geq V_{\text {poop }} \geq V_{\text {op x }}$
b) $V_{\text {SRSWOR }} \geq V_{\text {opt }} \geq V_{\text {prop }}$
c) $\mathrm{V}_{\text {SRSWOR }} \leq \mathrm{V}_{\text {pOP }} \leq \mathrm{V}_{\text {opt }}$
d) $V_{\text {SRSWOR }} \geq V_{\text {Prop }} \leq V_{\text {opt }}$

5) Under proportional allocation, the size of sample from each stratum depends on * v) the size of stratum
b) the stratum variability - both (a) and (b)
d) neither

6) If population size is N and sample of n is drawn from it ($\mathrm{f}=\frac{\mathrm{n}}{\mathrm{N}}$) then finite population correction is
स
bo) 1-f
c) $1+f$
d) none of these
7) In sampling from proportion, if sample is drawn by without replacement then $\operatorname{var}(p)$ is
(2) $\frac{N-n}{N-1} \frac{P Q}{n}$
b) $\frac{N-n}{N} \frac{P Q}{n}$
c) $\frac{N+n}{N-1} \frac{P Q}{n}$
d) $\frac{N-n}{N-1} \frac{P Q}{n-1}$
8) Systematic sampling will yield better results only if the units within the same sample are
a) Homogeneous
b) Heterogeneous
c) all equal
d) none of these
9) If the population consists of linear trend then variance of stratified, systematic and SRSWOR are in the proportion of--
a) $1: n: \frac{1}{n}$
b) $\mathrm{n}: 1: \frac{1}{n}$
c) $\mathrm{n}: \frac{1}{n}: 1$
(d) $\frac{1}{n}: 1: n$

a) $\frac{1}{40}$
b) $\frac{39}{40}$

d) $\frac{7}{8}$

VIVEKANAND COLLEGE, KOLHAPUR.
Department of statistics
Internal Examination
Q. Attempt the following questions
a) The quality of the product means \qquad
i) Degree of brightness (ii) Fitness for use iii) Degree of perfection at any cost iv) None of them
b) Which of the following are the memory chart
i) CUSUM
ii) Shewhart
iii) EWMA
(1) Both i) and iii)
c) Which of following tools are useful in 'analyze and improve' step of DMAIC cycle?
i) Histogram
(ii) Cause and effect diagram
iii) Scatter diagram
iv) Pareto chart
d) The word PDCA stands for
i) Plan Do Control Act
ii) Plan Do Control Analyze
iii) Both i) and ii)
(v) None of them
e) Which of the following are not phases DMAIC methodology
i) Define
ii) Analyse
(ii) Act
iv) Measure
f) If lot is accepted on the basis of sampling inspection plan then \qquad
(i)ASN $=A T 1 \sqrt{\text { Ai) ASN }<A T I}$ (iii) ASN $>$ ATli iv) None of them
g) Producers risk is also called as. \qquad
(0)Type 1 error
ii) Power
iii) Type Il error
iv) None of them
h) For CUSM chart the value of the K is chosen as. \qquad
(1) $\left|\mu_{0}-\mu_{1}\right| / 2$
ii) $\left|\mu_{0}+\mu_{1}\right| / 2$
iii) $\left|\mu_{1}\right| / 2$
iv) Both i) and ii)
i) In three sigma limits the probability of producing a product within specification is.....
(3) 0.9973
ii) 0.0027
iii) 0.027
iv) 0.9975
i) For single sampling plan the value of average total inspection (ATS
i) $p^{*} P_{s}$
(ii) $n+(N-n) *\left(I-P_{0}\right)$
iii) n
iv) $n_{1}+n_{2}^{*}\left(l-P_{2}\right)$

$A-N=n$.

$$
n+(N-n)(1-P a) \cdots n
$$

