"झ्ञान विश्ञान आणि सुसंख्कार याभाठी शिक्षण प्रसार"
-शिक्षणमहर्षी डॉ. खापूजी साळूंखे

## Vivekanand College, Kolhapur <br> Department of Statistics <br> B.Sc. I

Notice
Date: 09/09/2019

All students of B.Sc. - I are hereby informed that, there will be continuous internal examination for semester-I, 2019-20 of 20 marks will be held as follows

| Sr. <br> No. | Date | Time | Paper <br> No. | Section | Title of the Paper |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 01 | $19 / 09 / 2019$ | 11.00 to 12.00 | I | I | Descriptive Statistics I |
| 02 | $21 / 09 / / 2019$ | 2.00 to 3.00 | I | II | Discrete Probability <br> Distribution |

Ms. V. V. Pawar
Associate Professor

# Day \& Date: Thur day 19 

Time: 11.00 am - $12 \mathrm{z}_{\mathrm{y}}$ ant
Thistructions: 1) All questions are compulsory.

## Q. 1. Select the correct alternative

1. Sampling is ... 5
A. not always useful
C. has number of adnamages over census
b. not always possible
d. the census
2. Ambles are measured using ....
a. normal scale only
b. ordinal scale only
cerbotha and b.
d. neither a nor b
3. Which one of the following is not a measure of central tendency?

SE Mean Deviation
U. Mean
c. Median
d. Mode
4. Which one of the relation is me?
Man: $\frac{1}{2}(3 \mathrm{Me}-\mathrm{Mo})$
b. Mean $-3(3 \mathrm{Mc}-\mathrm{MO})=2 \mathrm{MO}$
c. $M e=M a+\frac{2}{3}(M o-x)$
d. $M 0=2 M e-3 \ddot{x}$
5. Secondary data is ....
a. Already collected by some other agency
b. a processed data
c. A. Sunbed data


Q2. Alternpteny Two

1. Defoe AM and sta properties of AM
2. Explain i SRSWM
i. SRSWOR
3. Define i Mode in. GM.
ii. $H \mathrm{M}$
Q3Antemptany One
4. Dene the formula of Median. $\quad$. Prove that $A M \geq G M \geq H M$.
"ज्ञान विज्ञान आणि सुसंख्कार यासाठी शिक्षण प्रसार"

## Vivekanand College, Kolhapur Department of Statistics <br> B.Sc. II <br> Notice

Date: 09/09/2019
All students of B.Sc. - II are hereby informed that, there will be continuous internal examination for semester-III, 2019-20 of 20 marks will be held as follows

| Sr. <br> No. | Date | Time | Paper <br> No. | Section | Title of the Paper |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 01 | $26 / 09 / 2019$ | 4.15 to 5.15 | III | I | Statistical method-I |
| 02 | $28 / 09 / / 2019$ | 3.30 to 4.30 | III | II | Probability <br> Distribution-I |


vowor
Ms. V. V. Pawar
Associate Professor

## VIVEKANAND COLLEGE (Autonomous), KOLHAPUR.

## B. Sc. (Part - II) Sem.: III Internal Examination, 2019

## STATISTICS (Paper -III)

Roll No.:
Day and Date:

Probability Distribution - I
Total Marks: 20
Q.1. Choose the correct alternative.

1. For continuous bivariate $r$. $v .(X, Y)$ the value of $E[E(Y / X=x)]=$ $\qquad$
a) $\operatorname{Var}(X)$
b) $\operatorname{Var}(Y)$
c) $E(Y)$
d) $E(X)$
2. The correct relation between fourth cumulant and central moment is
a) $K_{4}=\mu_{4}$
b) $K_{4}=\log \mu_{4}$
c) $K_{4}=\mu_{4}+3 \mu_{2}^{2}$
d) $K_{4}=\mu_{4}-3 \mu_{2}^{2}$
3. If $M_{x}(t)$ is the mgf of $r . v . X$ then $M_{3 x}(t)$ is
a) $3 M_{x}(t)$
b) $M_{x}(3 t)$
c) $e^{34} M_{x}(t)$
d) $M_{x}\left(\frac{3}{t}\right)$
4. If $f(x)=k x^{2}, 0 \leq x \leq 3$, is p.d.f. then the value of $k$ is $\qquad$
a) $\frac{1}{4}$
b) $\frac{2}{3}$
c) $\frac{1}{3}$
d) $\frac{1}{9}$
5. The value of $F(x, y)$ lies in the interval.
a) $(-1,0)$
b) $(0,1)$
c) $(-1,1)$
d) $(-\infty, \infty)$

## Q.2. Attempt any One

1. Define the following terms for continuous $r$. $v . X$
i) Mean
ii) Median
iii) Mode
iv) Variance
v) G.M.
2. The joint p. d. f. of bivariate $r . v .(X, Y)$ is $f(x, y)=4 x y ; 0<x<1,0<y<1$
$=0$; otherwise
Find
i) Marginal p. d. f. of $X \quad$ ii) Marginal p. d. f. of $Y$
iii) Mean of $X$ and Mean of $Y$
iv) Conditional distribution of $X$ given $Y$
v) Conditional distribution of $Y$ given $X$

## Q. 3. Attempt any One

1. Define c.d.f. of continuous $r$. $v . X$ and state its properties.
2. If $X$ is a $r$. $v$. with pdf $f(x)=3(1-x)^{2} ; 0 \leq x \leq 1$ then find the pdf of $Y=\frac{x}{1-X}$.
3. For continuous bivariate r. $v .(X, Y)$ show that $E(X-Y)=\mathbb{E}(X)-E(Y)$.


# VIVEKANAND COLLEGE, KOLMAPUR.(Autonomous) <br> Department of Statistics <br> Semester: ill Paper No.: Statistical Methods-1 <br> Internal Examination 201 \$/2000 <br> Roll No: 

Date: 2609/3018
Time: - 4.15 pma 10 5.50 pmm
Q1. Select correct alternative.
(5 Marks)

1. Purchasing power of money increases if.........
a. Price index increases
b. Price index decreases
c. cost of living Index number decreases

2. Which of the following Index number does not satisfies unit test $\qquad$
a. Simple average of price relative
b. Laspeyre's
c. simple aggregative
d. Paasche's
3. Laspeyre's juice Index number uses weights as....

- Base year quantities
b. Current year quantities
c. Base year prices
d. current year prices.

4. If $X$ is a passion variate with mean $S$ then by chebychev's Inequality we have $P[|X \cdot s| \leq \mid \geq \ldots$.
a. 0.2
b. 0.4
c. 0.6

d. 0.8
5. If $X-B\left(4 \frac{2}{2}\right)$ hen by chebychev's inequality $p(I X-u 1 \leq 2) \geq$ $\qquad$
4 :
$6 \frac{1}{3}$

11

Q 2 Attempt any ONE

1. Define Index number. What are the problems in the construction of Index number? Explain these problems:
2. Define cost of living hider number. Explain inethods of constructions of cost of living Index numbers.

## Q3. Attempt any two

(10 Marks)

1. Sate and prove chebychev's inequality for discrete random variable.
2. A fair die is tossed 720 tines, use chebychev's inequality to find lowe bound for probability of getting 100 to 140 sixes.
3. Explain the type of the Index numbers Give four uses of the indegesmbers.


"ज्ञान विज्ञान आणि सुसंख्कार याझाठी शिक्षण प्रसाई"<br>-शिक्षणमहर्षी डॉ. बापूजी साळूंखे<br>Vivekanand College, Kolhapur<br>Department of Statistics<br>B.Sc. III<br>Notice

Date: 09/09/2019

All students of B.Sc. - III are hereby informed that, there will be mid semester examination for 2019-20 will be held as follows

| Sr. <br> No. | Date | Time | Paper <br> No. | Title of the Paper |
| :---: | :--- | :--- | :---: | :--- |
| 01 | $23 / 09 / 2019$ | 12.00 to 12.15 | IX | Probability Distribution I |
| 02 | $24 / 09 / 2019$ | 12.00 to 12.15 | X | Statistical Inference I |
| 03 | $25 / 09 / 2019$ | 12.00 to 12.15 | XI | Design of Experiment |
| 04 | $26 / 09 / 2019$ | 12.00 to 12.15 | XII | Operation research |




Ms. V. V. Pawar
Associate Professor

# Vivekanand College, Kolhapur. <br> Department of Statistics 

B.Sc. Part-III (Semester -V) Internal Examination, 2019

Probability Distribution-I (Paper No. IX)
Date: 22/09/2019
Total Marks: 10
Q1) Select correct alternative:

1) Laplace distribution is
a) Positively skew
b) Negatively Skew
e) Symmetric
d) None of these
2) If $X_{i} \sim L N\left(\mu, \sigma^{2}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}$ and they are independent then distribution of $G=$ $\left(X_{1} X_{2} \ldots X_{n}\right)^{1 / n}$ is
a) $L N\left(\mu, \sigma^{2}\right)$
b) $N\left(\mu, \sigma^{2}\right)$
c) $L N\left(\mu, \sigma^{2} / n\right)$
d) $N\left(\mu, \sigma^{2} / n\right)$
3) If X follows truncated normal distribution with parameters $\mu=0, \sigma=1$, truncated to the above $\mathrm{b}=5$ then p.d.f of X is
$f(x)=k e^{-\frac{x^{2}}{2}}, x<5$ then $k=$
a) $\frac{1}{\sqrt{2 \pi}[1-\Phi(5)]}$
b) $\frac{1}{\Phi(5)}$
c) $\frac{1}{\sqrt{2 \pi} \Phi(5)}$
d) none of these
4) Following distribution is particular case of Weibull distribution
a) Exponential
b) Laplace
c) Gamma
d) Both (a) and (c)
5) If X is a continuous random variable with pdf. $f(x)$ then pfd . Truncated random variable truncated to the left at $x=a$ is
a) $f(x) / P(X>a)$
b) $f(x) P(X>a)$
c) $f(x) / P(X<a)$
d) $f(x) / P(X \neq a)$
6) If X and Y are i.i.d exponential variates with mean $\theta$ then distribution of $\mathrm{X}-\mathrm{Y}$ has distribution(d) Lognormal
b) Laplace
c) Uniform
d) Exponential
7) Mean of lognormal distribution is
a) $\mu$
ver $e^{\mu}$
C) $e^{\mu+\frac{\sigma^{2}}{2}}$
d) $\mu+\frac{\sigma^{2}}{2}$
8) If $X \sim U(-\pi / 2, \pi / 2)$ then $\mu+\lambda \tan (x)$ has distribution
a) $L(\mu, \lambda)$
b) $C(\mu, \lambda)$
c) $C(0,1)$
d) Both (b) and (c)
9) Mode of logistic distribution is
-a) $\mu$
b) $e^{\mu}$
c) $\log (\mu)$
d) $\log \left(\mu+\frac{\sigma^{2}}{2}\right)$
10) If $X$ has truncated exponential truncated to the left at $x=a$ then its variance is
a) $a+\frac{1}{\theta}$
b) $\frac{1}{\theta^{2}}$
c) $\frac{a}{\theta^{2}}$
d) $\frac{1}{\theta^{2}}+a$

Day and Date: Tuesday, 24/09/2019
-
Q. Choose the correct alternative.
i) In sampling from a $N(\mu, 100)$ population consistent estimator of $\mu$ is.
a) Sample mean
b) Sample median
c) Sample variance
4) All the above
ii) An estimator $T$ based on a sample of size is said to be negative ely biased estimator of $\theta$ if
a) $E$
$T)=\theta$
b) $E(T)>\theta$
对 $E(T)<\theta$
d) $E\left(T^{2}\right)>\theta$
iii) An unbiased estimator $T$, of the parameter $\theta$ is said to be more efficient than any other unbiased estimator of $\theta$ if $\ldots$..
a) $E\left(T_{1}\right)<E\left(T_{2}\right)$
b) $V\left(T_{i}\right)>V\left(T_{2}\right)$
aTV $\left.T_{1}\right)<V\left(T_{2}\right.$
d) $E\left(T_{1}\right)>E\left(T_{2}\right)$
iv) The point estimator of the parameter is
a) Constant
b) Any numerical value
e) A function of sample observations
d) None of these
$\checkmark$ V) If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample take en from a population have ing $U(0, \theta)$ distribution. then unbiased estimator of $\theta$ is ....
a) $\bar{X}$
b) $\frac{\overline{\bar{x}}}{2}$
Wm
d) $X_{(n)}$
i) If $15,16,18,17,14,10$ is a sample taken from a population having exponential $\rightarrow$ distribution with parameter $\theta$. then moment estimator of $\theta$ is
a) 90
b) $\frac{1}{15}$
C) $\frac{1}{90}$
d) 30
vii) If a family receives $1,02,32,4$ wrong telephone calls on sir randomly selected days, and wrong calls follow $P(\lambda)$ then the moment estimate of $\lambda$ will be
a) 0
by 2
c) 4
d) 3
viii) The MLE of parameter $\theta$ based on the. s. $X_{1}, X_{2}, \ldots X_{n}$ is that value of $\theta$ which
a) Max imizes the likelihood function
b) Max imizes the information function
c) Maximizes the distribution function
d) None of these
ix) Let $-2,0,8,1,-1,6,-3$ be ar .s. of size 7 from $f(x, \theta)=\frac{1}{2} e^{-|x-\theta|} ;-\infty<x<\infty$ Then MLE for $\theta$ is...
a) 97
Dr 0
c) 9
x) If $X \sim N\left(\mu, \sigma^{2}\right)$ men max mum likelihood estimator for par

## Deparment of Statibtics

Semester Paper Vo. Xl(Designsof Experments) Internal Examination 2019/2020

Roll Na :
8213
Max miks 10
Q. 1 Choose a correctalternative
a the precision required
b) experiment materialavalable
cheterogeneity of experimental material Shall the above
The formula for obtaining standard emor in RBD with $v$ treatments and rblocks and mean sum of square due to error is $S_{\bar{E}}^{2}$ is ...
ASESquiz
b) $S_{E}$ squt 2 :
c) $S_{E} \operatorname{sqrt}(2 *$
d) $S_{B} \operatorname{sqt}(2 \pi)$

The analysis of CRD is analogous to ANOVA for $\qquad$
Done way classification b) two way classification c) Three way classification dinone of these 4) The Principle of repetition of treatmente over the experimental matenal in design of experments is -
a) tandomuation
Cuplication
c) both aland b)
d) none of these
5) In analys of of data of RBD wh rblows and treatments, the error degrees of freedomare -.......
a) $\pi(t-1)$
b) (to- 1
s. $(t-1)(t-1)$
d) $(t-1,+-1,-1$
6) In analys is of RBD with 5 treatments and 4 blocks with one missing observation emor degrees of freedomare
a) 12
b) 20
(1) 11
d) None of these

In $5 x$ º̈ Latin square design degrees of freedom foreror sum of squares and total sum of squares $^{2}$
$\qquad$
a) 4,24
D 12.24
c) 24,12
d) 4,12
8) Suppose there are two designs D1 and D2 with same replicariors then efficiency of design $D 2$
with respect to design $D 1$ is--...
动 $0^{2}$
610 $0 \cdot 0^{2}$
c) 1
d) $6^{2}=\sigma^{2}$ :
O) In analys is of RBD with usual notations the estimate of missing observation is -....
$\sqrt[2]{(r-r)(t-1)}$
v) $\frac{-T+!B-a}{(-1)(t-1)}$
c) $\frac{T T+5-2 G}{(T-1)(t-1)}$
(a-10) latin Square Design is three bay layout.

# VIVEKANAND COLLEGE, KOLHAPUR. Department of Statistics 

Semester: V Paper No. : XII (Operations Research)
Internal Examination 2019/2020
Roll No.:

## Q. 1 Choose a correct alternative

1) The algorithm used to find an optimal sequence of $n$ jobs through two machines is known as -
a) Hungarian method
b) MODI method
c) Johnson's method
d) none of these
2) If the dual has unbounded solution , then primal has
a)Feasible solution
b) Unbounded solution
c) No solution
d) alternative solution
3) In transportation problem degeneracy occurs when number of non-negative allocations are----
a) equal to $m+n-1$
b) less than $\mathrm{m}+\mathrm{n}-1$
c) less than $\mathrm{m}+\mathrm{n}-1 \&$ at independent positions. d) less than $\mathrm{m}+\mathrm{n}-1 \&$ at dependent positions
4) For maximization L.P.P. model Simplex method is terminated when all values------
a) $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \leq 0$
b) $Z_{j}-C_{j} \geq 0$
c) $Z_{j}-\mathrm{C}_{j}=0$
d) none of these
5) Any solution to general L.P.P. which satisfies the non-negative restrictions of the problem is known as-----
a) Optimal solution
b) unbounded solution
c) Feasible solution
d) degenerate solution (t-1)(r-1)-1
6) To formulate a problem for solution by the Simplex method, we must add artificial variable tn----

Only equality constraints b) only greater than constraints
c) Both a) and b)
d) None of these
7) The dual of primal maximization L.P.P. having $m$ constraints and $n$ variables should----
a) Have $n$ constraints and $m$ non-negative variables.
b) Be a minimization L.P. problem
c) both a) and b)
d) None of these.
8) In a T.P> with minimization of objective function net evaluation $\Delta_{i j}=C_{i j}-\left(u_{i}+v_{j}\right)$ for each empty cell is greater than or equal to zero, then the solution is----
a) Optimum
b) solution can be improved
c) optimum but alternative solution may exists
d) none of these
9) If there are $n$ workers and $n$ jobs, there would be $\qquad$
a) $n$ !
b) $(\mathrm{n}-1)$ !
c) $(n!)^{n}$
d) $n$ solutions
10) An optimum assignment requires that the maximum number of lines through squares with zero opportunity cost be equal to the numb
a) rows or columns
b) rows and columns
c) rows and columns -1
d) None of these
"ज्ञान विज्ञान आणि सुसंख्कार याराठी शिक्षण प्रसार"
-शिक्षणमहर्षी डॉ. खापूजी साळूंखे 125

## Vivekanand College, Kolhapur <br> Department of Statistics

B. Sc. I

Notice
Date: 25/02/2020

All students of B.Sc.-I are hereby informed that, there will be a internal examination for semester-II , 2019-20 of 20 marks will be held as follows

| Sr. <br> No. | Date | Time | Paper <br> No. | Section | Title of the Paper | Topic |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 01 | $02 / 03 / 2020$ | 2.00 to <br> 3.00 | II | I \& II | Descriptive Statistics II | Unit-3, 4 |
|  |  | Discrete probability <br> distributions | Unit-3, 4 |  |  |  |




Ms. V. V. Pawar
Associene patsofessor
Department of Strintic
dvekanand College Kotiona

# Vivekanand College(Autonomous), Kolhapur <br> Department of Statistics <br> B. Sc. I 

Continuous Internal Evaluation (CIE) 2019-2020
Time: 2.00pm-03.00 $\mathbf{~ p m}$
Date: 02/03/2020
Total Marks: 20
Q. 1 Choose the correct alternative.
i) Multiple correlation coefficient lies between
a) $(-\infty, \infty)$
b) $(0, \infty)$
c) $(0,1)$
d) $(-1,1)$
ii) An additive model of time series with the components T, S, C, and I is $\qquad$
a) $\mathrm{Y}=\mathrm{T}+\mathrm{S}+\mathrm{CXI}$
b) $Y=T+S X C X I$
c) $\mathrm{Y}=\mathrm{T}+\mathrm{S}+\mathrm{C}+\mathrm{I}$
d) $Y=T X S+C X I$
iii) If X is a r.v. having negative binomial distribution then
a) Mean $\geq$ Variance
b) Mean $\leq$ Variance
c) Mean = Variance
d) None of these
iv) If $X$ and $Y$ are independent r.vs then
a) $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$
b) $\operatorname{Cort}(\mathrm{x}, \mathrm{Y})=0$
c) $\mathrm{E}(\mathrm{XY})=\mathrm{E}(\mathrm{X}) \cdot \mathrm{E}(\mathrm{Y})$
d) All of these

## Q. 2 Attempt any one of the following.

i) Define Partial correlation coefficient. If $r_{12}=r_{13}=r_{23}=\rho$ then show that
i) $R_{1.23}^{2}=\frac{2 \rho^{2}}{(1+\rho)}$
ii) $\mathrm{r}_{12.3}=\frac{\rho}{(1+\rho)}$
ii) Define negative binomial distribution and find its mean and variance using p.g.f.
iii) Define Time Series. State its component. Explain one of them.
Q. 3 Attempt any Two of the following.
i) Define Residual and state properties of residual.
ii) Explain the method of Moving Averages.
iii) Prove that $E(X+Y)=E(X)+E(Y)$
iv) Define a) conditional Mean b) Define Marginal probability distribution of $X$ and $Y$
iii) Prove that $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$
iv) Define a) conditional Mean b)Define Ma(ginal probability distriburof of $X$ and $Y$.

"ज्ञात विज्ञान आणि सुसंस्कार यासाठी शिक्षण प्रसाइ"
-शिक्षणमहर्षी ऊॉ. खापूजी साळूंखे
Vivekanand College, Kolhapur
Department of Statistics
B.Sc. II

Notice
Date: 25/022020
All students of B.Sc. - II are hereby informed that, there will be internal examination for semester-IV, 2019-20 of 20 marks will be held as follows

| Sr. <br> No. | Date | Time | Paper <br> No. | Section | Title of the Paper | Topic |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 01 | $05 / 03 / 2020$ | 4.15 to <br> 5.15 | III | I \& II | Statistical method- <br> II | Unit 3,4 |
|  |  |  | Probability <br> Distribution-II | Unit 2,3 |  |  |



Ms. V. V. Pawar
Associate Professor

# Vivekanand College (Autonomous), Kolhapur 

Department of Statistics
B. Sc. II SEM IV

Continuous Internal Evaluation (CIE) 2019-2020
Subject: Probability Distribution II
Time: $4.15 \mathrm{pm}-5.15 \mathrm{pm}$
Date: 05/03/2020
Total Marks: 20

## Q. 1 Choose the correct alternative.

i) If X has chi-square distribution then its variance is
a) 0
b) $n$
c) 2 n
d) None of these
ii) Which function is used to create data frames?
a) data.frame()
b) data.sets ()
c) function ()
d) C ()
iii) Alternative hypothesis decides following type of. $\qquad$ .test.
a) One sided
b) Two sided
c) Both a) \& b)
d) Neither a) nor b)
iv) Area of critical region depends on
a) size of type I error
b) size of type II error
c) Both a) \& b)
d) Neither a) nor b)
Q. 2 Attempt any one of the following.
i) Define $t$ variate and drive its p.d.f.
ii) Explain a) F test for difference of variances.
b) Large sample test for testing $\mathrm{H}_{0}: \mathrm{P}=\mathrm{P}_{0}$ against $\mathrm{H}_{1}: \mathrm{P}<\mathrm{P}_{0}$
Q. 3 Attempt any Two of the following.
i) Define a) Power of the test $\quad$ b) Level of significance
ii) Explain Chi - square test of independence of attributes for $2 \times 2$ contingency table.
iii) Explain with example
a) scan function
b) combine function
iv)Obtain mode of F - distribution with $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ d. f.


## Vivekanand College, Kolhapur (Autonomous) <br> Department of Statistics <br> B.Sc - III Internal Examination (2019-20)

Notice
Date: 10/02/2020

All the students of B.Sc. - III are hereby informed that, the Internal Examination of Semester - VI will be held as per following time table

| Sr.No. | Date | Time | Paper No. |
| :---: | :---: | :---: | :---: |
| 1 | 17/02/2020 | $\begin{gathered} 11: 30 \mathrm{am} \text { to } \\ 11.45 \mathrm{am} \end{gathered}$ | Paper - X 111 : Probability Theory |
| 2 | 18/02/2020 |  | Paper - XIV : Statistical Inference-II |
| 3 | 20/02/2020 |  | Paper - XV : Sampling Theory |
| 4 | 22/02/2020 |  | Paper - XV1: Quality Management and Data Mining |

## Nature of Question Paper (Total Marks $=10$ )

10 MCQ's each carrying I mark

＂झान जिद्ञात आति स्तुसंस्कार टासाती शिश्षाण प्रसाव＂
शिक्षणमहर्षी ऊॉ．आपूपी साल्रूखे．
Shri SWall Vivekanand Shifshan Sanstha＇s
VIVEKANAND COLLEGE（Autonomous），KOLHAPUR． Department of Statistics
Statistical Inference－II（Paper No．XiV）Roll No．：
Date：－18／02／2020 Time：11：30 a．m．－11：45 a．m．
Total Marks－ 10
（10 marks）
（）．Choose the correct altermative
If $(-1.96<\mu<1.96)=0.95$ then which of the following statement is correct．
a）（ength of Confidence interval is 3.92 unts．
b）The confidence coefficient is 0.95 ．
c）The probability that $\mu$ lies between $(-1.96 .1 .96)$ is 0.95 ．
（3）Nll the above．
2．The quantities C1\＆C2 within which the unknown value of the parameter is expected to lie such that $\mathrm{P}(\mathrm{C} 1<\theta<\mathrm{C} 2)=1-\infty$ are known as
－Confidence limits
b）C．I．
c）Confidence coefficient
d）confidence levels

3．Imeral estimate of parameter $\theta$ of exponential distribution can be ohtained by use of：
a（hi－square Distribution
b）F－distribution
（d）Vormal distribution
d）t－distribution．

5．A random variable $T$ which is a function of $r$ ．s．，a parameter $\theta$ dits distribution is independent of $\theta$ is known as
a）a statistic
Ma pisot
c）a likelihood function
（d）Vone of them

Sthe probability of rejecting the null hypothesis when it is true is called as $\qquad$
a）P－value（ysize of the test Power of the teat d）Type Il error
6．If $\lambda_{1}, X_{2}, \ldots X_{n}$ is a $r$ ．s．of size $n$ taken from $N(\theta, 100)$ population a UMP test exists for人位ting $H_{0}: \theta=\theta_{0}$ against
b） $\mathrm{H}_{1}: \theta>\theta_{0} \quad$ c） $\mathrm{H}_{1}: \theta<\theta_{0}$
d）Either（ii）or（iii）
7．Which of the following is most appropriate for testing simple $H_{0}$ against simple $H_{1}$
a）IVP level $\alpha$ test exists
6y MP level $\alpha$ test exists
c）l MP level $(1-\alpha)$ test exists
d）MP level $(1-\alpha)$

8．In a SPRT of strength $(\alpha, \beta)$
a）Sample size is fixed，$\alpha \& \beta$ are minimized
b）Sample size $\& \alpha$ are fixed，$\beta$ is minimized
c）Sample size $\& \beta$ are fixed，$\alpha$ is minimized
g才 Sample size is random，$\alpha \& \beta$ are fixed
Q W．The theory of SPRT was developed bs

（1）



Vivekanand College, Kolhapur
Department of Statistics
B.Sc. Part-III (Semester -VI) Mid-Term Examination, 2020

Sampling Techniques-I (Paper No. XV)
Total Marks: 10
Instructions: 1) All questions are compulsory.
2) Use of calculations and statistical tables is allowed.

Q1) Select correct alternative:

1) When frame is not available or costly---.- scheme helps in reducing cost of survey.
a) SRSWR
b) SRSWOR
c) Stratified Sampling (d) Cluster Sampling
2) A systematic sample of size 20 is drawn from a population of size 120 , then probability of getting any sample out of all possible systematic samples of same size is
a) $1 / 20$
b)
1/6
c) $6 / 20$
d) None of these
3) If the population is in a linear trend then ratio $V\left(y^{-}\right)_{\text {st }}: V(y)_{\text {sy }}: V(y)_{\text {wor }}$ is-------
a) $\mathrm{n}: 1 / \mathrm{n}: 1 \mathrm{~b})$
$1: n: 1 / n$
c) $\mathrm{H} / \mathrm{m}: 1: \mathrm{n}$
d) $1 / n: n: 1$
4) The probability of not selecting a specified unit in SRSWOR of $n$ units from population on $N$ units is-------
a) $1 / n$
b) $1-(1 / \mathrm{n})$
c) $n / N$
(d) $1-n / \mathrm{N}$
5) In stratified random sampling with stratum sizes $N 1=800, N 2=300$ and stratum variances $S_{12}=$ $144, \mathrm{~S}_{22}=400$ under Neyman allocation, the ratio of sample sizes $\mathrm{nl} / \mathrm{n} 2$ is given by ---
a) 12.50
b) 9
d) 11.10
e) 11.94
6) In sampling for proportion, if $N$ is large and samples are large then $V(p)=$ $\qquad$
a) $p / q$
b) $(\mathrm{N}-\mathrm{n}) \mathrm{PQ} / \mathrm{n}$
c) $(\mathrm{N}-1) \mathrm{PQ} / \mathrm{n}$
d) None of these.
7) Error committed in presentation of data are categorized as--------
a) Sampling error
b) population error
c) Non-sampling error
d) standard error
8) Systematic sampling becomes more precise than SRSWOR if intra-class correlation becomes-
a) Positive
b) Negative
c) zero
d) None of these
9) In optimum allocation sample size from each stratum is proportional to-------
a) Stratum size
b) Stratum variability $c$ c both a) and b)
d) either a) or b
10) Which of the following statement is not true?
a) Standard error cannot be zero
c) Standard error can be negative.
b) standard error can not one?
(d) Allthe above.
