"ক্লান থিক্লান প্লাণি মুম্নাম্বন্যায় যামান্তা প্লিঞ্চাতা দ্রমাম্ন" -श্লিঞ্চাতাস্রচর্মী ডাঁ.জাদুজী মাল্লুঁঝ Vivekanand College, Kolhapur Department of Statistics B.Sc. I Notice Date: 09/09/2019

All students of B.Sc. - I are hereby informed that, there will be continuous internal examination for semester-I, 2019-20 of 20 marks will be held as follows

Sr.	Date	Time	Paper	Section	Title of the Paper
NO.			190.		
01	19/09/2019	11.00 to 12.00	Ι	Ι	Descriptive Statistics I
02	21/09//2019	2.00 to 3.00	I	II	Discrete Probability
		•			Distribution

Yawa Ms. V. V. Pawar Associate Professor

25

College, Kolhapur, Department of Statistics B.Sc. Part- (Semester -1) Pre Sem Examination, 2019 Day & Date: Thursday 19 /09/2019 Descriptive Statistics-1 Time: 11.00 am -12.30 am Instructions: 1) All questions are compulsory. Total Marks: 20 Q. 1. Select the correct alternative 1. Sampling is 5 a not always useful b. not always possible c. has number of advantages over census d, the census 2. Attributes are measured using a normal scale only b. ordinal scale only Leboth a and b. d, neither a nor b 3. Which one of the following is not a measure of central tendency? Mean Deviation d. Mode b. Mean c. Median 4. Which one of the relation is true? $Mean = \frac{1}{2}(3Me - Mo)$ b. Mean-3(3Me - Mo) = 2 Mo c. $Me = Mo + \frac{2}{3}(Mo - \bar{x})$ d. $Mo = 2Me - 3\bar{x}$ 5. Secondary data is b. a processed data a. Already collected by some other agency d All of these c. A finished data 5+2=10 Q2. Attempt any Two STESTD ESTD 1. Define A.M and state properties of A.M. ii. SRSWOR 2. Explain i SRSWR 3. Define i. Mode ii. G.M. iii. H.M. Q3.Attempt any One 2. Prove that $A.M \ge G.M. \ge H.M.$ JUNE 1. Derive the formula of Median. A TOTHAPUR - 416003

-

"ক্লান থিক্সান থ্ৰাণী স্কুম়াম্বনাম যামান্তা প্লিঞ্চাল দ্ৰমান্ন' -প্লিঞ্চালেন্দ্ৰর্জী ভাঁ.জাতুলী সাকুন্দ্র Vivekanand College, Kolhapur Department of Statistics B.Sc. II Notice

Date: 09/09/2019

36

All students of B.Sc. – II are hereby informed that, there will be continuous internal examination for semester-III, 2019-20 of 20 marks will be held as follows

Sr.	Date	Time	Paper	Section	Title of the Paper
No.			No.		
01	26/09/2019	4.15 to 5.15	III	Ι	Statistical method-I
02	28/09//2019	3.30 to 4.30	III	II	Probability
					Distribution-I

vyawar

Ms. V. V. Pawar Associate Professor Department of Statistics

VIVEKANAND COLLEGE (Autonomous), KOLHAPUR.

B. Sc. (Part - II) Sem.: III Internal Examination, 2019

STATISTICS (Paper -III)

Probability Distribution - I

Roll No.: Day and Date:

Total Marks: 20

0.1. Choose the correct alternative.

(10)

(5)

1. For continuous	bivariate r. v. (X, Y)	the value of E [E(Y	(X=x)] =	
a) Var(X)	b) Var (Y)	c) E(Y)	d)E(2	X)
2. The correct re	lation between fourth	cumulant and centi	ral momen	t is
a) $K_4 = \mu_4$	b) K ₄ = log μ_4	c) $K_4 = \mu$	ι4 +3 μ <mark>2</mark>	d) K ₄ = $\mu_4 - 3 \mu_2^2$
3. If $M_x(t)$ is the	mgf of r. v. X then M ₃	x(t) is		
a) 3 M _x (t)	b) M _x (3t)	c) $e^{3t} M_x(t)$	d) M	$I_x\left(\frac{3}{t}\right)$
4. If $f(x) = kx^2$, 0	$\leq x \leq 3$, is p.d.f. then	the value of k is		
a) $\frac{1}{4}$	b) $\frac{z}{3}$	c) $\frac{1}{3}$	d) $\frac{1}{9}$	
5. The value of I	f(x, y) lies in the interv	al		
a) (-1, 0)	b) (0, 1)	c) (-1, 1)	d) (-	-00,00)

Q.2. Attempt any One

1. Define the following terms for continuous r. v. X

i) Mean ii) Median iii) Mode iv) Variance v) G.M.

2. The joint p. d. f. of bivariate r. v. (X, Y) is f(x, y) = 4xy; $0 \le x \le 1, 0 \le y \le 1$

= 0 ; otherwise

Find i) Marginal p. d. f. of X ii) Marginal p. d. f. of Y

- iii) Mean of X and Mean of Y
- iv) Conditional distribution of X given Y
- v) Conditional distribution of Y given X

Q. 3. Attempt any One

1. Define c.d.f. of continuous r. v. X and state its properties.

- 2. If X is a r. v. with pdf $f(x) = 3(1-x)^2$; $0 \le x \le 1$ then find the pdf of $Y = \frac{X}{1-X}$.
- 3. For continuous bivariate r. v. (X, Y) show that E(X Y) = E(X) E(Y).

VIVEKANAND COLLEGE, KOLHAPUR.(Autonomous) Department of Statistics

Semester: 111 Paper No. : Statistical Methods-1

Internal Examination 2019/2020

Roll No .:

G

Date: 26/09/2019 Time: - 4.15pm to \$.00pm Max marks: 20 Q1. Select correct alternative. (5 Marks) 1 Purchasing power of money increases if..... a. Price index increases b. Price index decreases c. cost of living Index number decreases at both b and c 2. Which of the following Index number does not satisfies unit testa. Simple average of price relative b. Luspeyre's c, simple aggregative d. Paasche's 3. Laspeyre's price Index number uses weights as x Base year quantities b. Current year quantities c. Base year prices d current year prices. 4. If X is a passion variate with mean 5 then by chebychev's Inequality we have P [|X-5|<5] ≥..... a. 0.2 b. 0.4 c. 0.6 8.0.8 5. If $X \sim B(4, \frac{1}{2})$ then by chebychev's inequality $p[|X - u| \le 2] \ge \dots$ b.= d. 1 Q 2 Attempt any ONE (5 Marks) 1. Define Index number. What are the problems in the construction of Index number? Explain these problems. 2. Define cost of living Index number. Explain methods of constructions of cost of living ladex numbers. Q3. Attempt any two (10 Marks) 1. State and prove chebychev's inequality for discrete random variable. 2. A fair die is tossed 720 times, use chebychev's inequality to find lower bound for probability of getting 100 to 140 sizes. 3. Explain the type of the Index numbers. Give four uses of the index bambers. COX TOUR - 41600

"ক্লাল থিক্লাল গ্লাণি ঝুন্নান্বকান যান্নাচী খ্লিঞ্চাण प्रभान" -খ্লিঞ্জাতাসहর্জী ডাঁ.জাযুলী নাাকুন্ত্র Vivekanand College, Kolhapur Department of Statistics B.Sc. III Notice

Date: 09/09/2019

All students of B.Sc. - III are hereby informed that, there will be mid semester examination for 2019-20 will be held as follows

Sr.	Date	Time	Paper	Title of the Paper
No.			No.	
01	23/09/2019	12.00 to 12.15	IX	Probability Distribution I
02	24/09//2019	12.00 to 12.15	X	Statistical Inference I
03	25/09/2019	12.00 to 12.15	XI	Design of Experiment
04	26/09/2019	12.00 to 12.15	XII	Operation research

Nawa

Ms. V. V. Pawar Associate Professor

NO= 8203 SH RI SWAMI VI VEKAN AN D SHI KSH AN SAN STH A'S Roll जिङ्गानहर्षे ज. मपूर्ण काल्ये VI VEKAN AN D COLLEGE, KOLHAPUR. B. Sc. (Part - III) Midterm Examination, 2019 STATISTICS (Paper - X) Roll NO .: Statistical Inference-I Day and Date: Tulesday, 24/09/2019 Total Marks: 10 (10)O. Choose the correct alternative.) In sampling from a N (μ , 100) population consistent estimator of μ is.... All the above b) Sample median c) Sample variance a) Sample mean ii) An estimator T based on a sample of size n is said to be negatively biased estimator of θ if $\nabla \theta \in (T) < \theta$ d) E(T^2) > θ b) $\mathbf{E}'(\mathbf{T}) > \theta$ a) E(T) = θ iii) An unbiased estimator T_1 of the parameter θ is said to be more efficient than any other unbiased estimator of θ if.... a) $E(T_1) \le E(T_2)$ b) $V(T_1) \ge V(T_2)$ of $V(T_1) \le V(T_2 - d) E(T_1) \ge E(T_2)$ iv) The point estimator of the parameter is b) Any numerical value .a) Constant d) None of these A function of sample observations If $X_1, X_2, ..., X_n$ is a random sample taken from a population having $U(0, \theta)$ distribution. then unbiased estimator of θ is.... b) $\frac{\overline{\overline{x}}}{\overline{x}}$ d) $X_{(n)}$. et 2 x a) \overline{X} 11 15, 16, 18, 17, 14, 10 is a sample taken from a population having exponential distribution with parameter θ , then moment estimator of θ is " c) $\frac{1}{90}$ b) $\frac{1}{15}$ d) 30 vii) If a family receives 1,0,2,3,2,4 wrong telephone calls on six randomly selected days, and wrong calls follow $P(\lambda)$ then the moment estimate of λ will be d) 3 c)4br2 a) 0 viii) The MLE of parameter θ based on the r.s. X_1, X_2, \dots, X_n is that value of θ which b) Maximizes the information function A Max imizes the likelihood function c) Maximizes the distribution function d) None of these ix) Let -2,0,8,1,-1,6,-3 be a r.s. of size 7 from $f(x, \theta) = \frac{1}{2} e^{-|x-\theta|}; -\infty < x < \infty$ Then MLE for θ is... c) 9 x) If X ~ N (μ , σ^2) then maximum likelihood estimator for parameter μ is b) sample median c) sample variance a) samp le mean JUNE OLHAPUR .

10	VIVE Semester Date: 25/09/2019	KANAND COI Departmen V Paper No.: Internal Examina	LLEGE, KOLHAPI t of Statistics : XI (Designs of Experi ation 2019/2020	UR. ments) Roll No.: 8213 Max marks 10
	Q.1 Choose a correct altern	native		
	Li The number of replication	s in an experiment is	based on	
	a) the precision require	d	b) experiment materia	l available
	c) heterogeneity of exp	erimental material	Mall the above	
	2) The formula for obtaining square due to error is S_{E}^{2}	g standard error in RE is	BD with v treatments and	r blocks and mean sum of
	$S_E \operatorname{sqrt}(2/r)$	b) $S_{\rm E} {\rm sqrt}(2/t)$	c) $S_E \operatorname{sqrt}(2/v)$ d) S_E	sqrt(2'n)
	3) The analysis of CRD is a	inalogous to ANOVA	for	
	an one way classificatio	on b) two way classif	fication (c) Three way class	ification d) none of these
1	4) The Principle of repetitio	n of treatments over th	he experimental material in	design of experiments is -
	a) randomization	by replication	e) both a) and b)	d) none of these
	5) In analysis of data of RB	D with r blocks and t t	treatments, the error degree	s of freedom are
	a) r(t-1)	b)t(r-1)	(t-1)(t-1)	d) (t-1 <u>k</u> r-1)-1
1	6) In analysis of RBD with freedom are	5 treatments and 4 b	locks with one missing obs	ervation, error degrees of
	a) +2	b)20	0111	d) None of these
	7) In 5x5 Latin square des are	ign degrees of freedon	n for error sum of squares a	nd total sum of squares
	a) 4, 24	5/12, 24	c)24,12	d) 4,12
Ň	8) Suppose there are two d with respect to design I	esigns D1 and D2 with D1 is	same replications then effi	ciency of design D2
	12 0 ² 0 ²	b) $6^{2}_{2}/6^{2}_{3}$	c)1	d) $6^{2}_{1} = 6^{2}_{2}$
	9) In analysis of RBD with	nusual notations the es	timate of missing observation	on is
	$\frac{a}{(r-1)(t-1)}$	$\frac{rT+tB-G}{(r-1)(t-1)}$	c) $\frac{\tau T + zB - 2G}{(r-1)(t-1)}$	$\frac{d}{dt} \frac{zT + rE - 2G}{(r-1)(r-1)}$
	10) Latin Square Design is	s three way la	ayout.	ESTD Ve
	af Complete b) Incomplete	c)Both a) & b) ★	JUNE of these
() 1			OTA	4PUR - 41603

VIVEKANAND	COLLEGE,	KOLHAPUR.
------------	----------	-----------

Department of Statistics

Semester: V Paper No. : XII (Operations Research)

Internal Examination 2019/2020

Roll No.:

Date: 26/09/2019

Max marks: 10

O.1 Choose a correct alternative 1) The algorithm used to find an optimal sequence of n jobs through two machines is known as d) none of these c) Johnson's method a) Hungarian method b) MODI method 2) If the dual has unbounded solution, then primal has-----d) alternative solution a)Feasible solution by Unbounded solution c) No solution 3) In transportation problem degeneracy occurs when number of non-negative allocations are---by less than m+n-1 a) equal to m+n-1c) less than m+n-1 & at independent positions. d) less than m+n-1 & at dependent positions 4) For maximization L.P.P. model Simplex method is terminated when all values----d) none of these c) $Z_i - C_i = 0$ b) $Z_j - C_j \ge 0$ a) $Z_i - C_i \leq 0$ 5) Any solution to general L.P.P. which satisfies the non-negative restrictions of the problem is known as----b) unbounded solution a) Optimal solution d) degenerate solution (t-1)(r-1)-1 ♂ Feasible solution 6) To formulate a problem for solution by the Simplex method, we must add artificial variable to----, b) only greater than constraints Only equality constraints d) None of these c) Both a) and b) 7) The dual of primal maximization L.P.P. having m constraints and n variables should---a) Have n constraints and m non-negative variables. b) Be a minimization L.P. problem d) None of these. → both a) and b) 8) In a T.P> with minimization of objective function net evaluation $\Delta_{ij} = C_{ij} - (u_i + v_j)$ for each empty cell is greater than or equal to zero, then the solution is----b) solution can be improved a) Optimum sy optimum but alternative solution may exists d) none of these 9) If there are n workers and n jobs, there would be ------LANAND a) n! b) (n-1)! (n!)ⁿ d) n solutions 10) An optimum assignment requires that the maximum number of lines which can be rawn through squares with zero opportunity cost be equal to the number of ---- E groptem G b) rows and columns a) rows or columns m JUNF * c) rows and columns -1 d) None of these TOP-14 PUR - 41500

"ক্লান বিক্লান খ্রাতি স্ত্রস্নান্নকান যামাচী খ্লিম্লতা দ্রমান্ন" –খ্লিম্লতান্সहর্মী ডাঁ-জাদুর্जী মান্ত্র্ব্ব

(125)

Vivekanand College, Kolhapur Department of Statistics B. Sc. I

Notice

Date: 25/02/2020

All students of B.Sc.-I are hereby informed that, there will be a internal examination for semester-II, 2019-20 of 20 marks will be held as follows

Sr.	Date	Time	Paper	Section	Title of the Paper	Topic
No.			No.			
01	02/03/2020	2.00 to	II	I & II	Descriptive Statistics II	Unit-3, 4
		3.00			Discrete probability	Unit-3, 4
					distributions	

Ms. V. V. Pawar Associate Professor Department of Statistics Vivekanand College Kothaour

Vivekanand College(Autonomous), Kolhapur **Department of Statistics** B. Sc. I **Continuous Internal Evaluation (CIE) 2019 -2020** Date: 02/03/2020 **Total Marks: 20** [04] b) (0, ∞) c) (0, 1) d) (-1, 1)is..... iii) If X is a r.v. having negative binomial distribution then b) Mean \leq Variance a) Mean \geq Variance ٠. c) Mean = Variance d) None of these b) Corr(x, Y) = 0a) Cov(X, Y) = 0d) All of these c) E(XY) = E(X).E(Y)[08] i) Define Partial correlation coefficient. If $r_{12} = r_{13} = r_{23} = \rho$ then show that i) $R_{1,23}^2 = \frac{2\rho^2}{(1+\rho)}$ ii) $r_{12.3} = \frac{\rho}{(1+\rho)}$ ii) Define negative binomial distribution and find its mean and variance using p.g.f. iii) Define Time Series. State its component. Explain one of them. [08] O. 3 Attempt any Two of the following.

i) Define Residual and state properties of residual.

ii) Explain the method of Moving Averages.

iii) Prove that E(X+Y) = E(X) + E(Y)

iv) Define a) conditional Mean b) Define Marginal probability distribution of X NAMAN and Y

iii) Prove that E(X+Y) = E(X) + E(Y)

iv) Define a) conditional Mean b)Define Marginal probability distribution fХ and Y.

FOLHAPUR -

Time: 2.00pm - 03.00 pm

Q. 1 Choose the correct alternative.

i) Multiple correlation coefficient lies between......

a) $(-\infty, \infty)$

ii) An additive model of time series with the components T, S, C, and I

$\mathbf{a}) \mathbf{Y} = \mathbf{T} + \mathbf{S} + \mathbf{C} \mathbf{X} \mathbf{I}$	b) $Y = T + S X C X I$
c) $Y = T + S + C + I$	d) $Y = T X S + C X J$

iv) If X and Y are independent r.vs then

Q.2 Attempt any one of the following.

"ক্লান দিক্লান প্লাগি স্থ্যস্নাফ্কাম যামাঠী খিঞ্চাগ দ্যমাম" -খিঞ্চাগেলদ্বর্জী ভাঁ.জাবুনী মান্তুর্ত্ত Vivekanand College, Kolhapur Department of Statistics B.Sc. II Notice

Date: 25/02/2020

All students of B.Sc. – II are hereby informed that, there will be internal examination for semester-IV, 2019-20 of 20 marks will be held as follows

Sr. No.	Date	Time	Paper No.	Section	Title of the Paper	Торіс
01	05 /03/2020	4.15 to 5.15	III	I & II	Statistical method- II	Unit 3,4
					Probability Distribution-II	Unit 2,3

Hawar Ms. V. V. Pawar Associate Professor Department of Statistics Wvekanand College Kolhapur

Vive	kanand Colleg Departr B. S	ge (Autonomous), Kolhapur ment of Statistics c. II SEM IV	
Contin	uous Internal	Evaluation (CIE) 2019 – 2020	
Time: 4.15pm – 5.15 pm	Date	e: 05/03/2020	Total Marks: 20
Q. 1 Choose the correct a	lternative.		[04]
i) If X has chi-square dis	tribution then it	s variance is	
a) 0	b) n	c) 2n	d) None of these
ii) Which function is use	d to create data	frames?	
a) data.frame()	b) data.sets ()	c) function ()	d) C ()
iii) Alternative hypothesi	s decides follow	ing type oftest.	
a) One sided		b) Two sided	
c) Both a) & b)	d) Neither a) nor b)		
iv) Area of critical region	depends on		
a) size of type I error		b) size of type II error	
c) Both a) & b)		d) Neither a) nor b)	
Q.2 Attempt any one of the	e following.		[08]
i) Define t variate and driv	ve its p.d.f.		
ii) Explain a) F test for di	fference of varia	nces.	
b) Large samp	le test for testing	g H ₀ : $P = P_0$ against H ₁ : $P < P_0$	
Q. 3 Attempt any Two of the	e following.		[08]
i) Define a) Power of the	e test b) Leve	l of significance	
ii) Explain Chi - square t	est of independer	nce of attributes for 2 x 2 contingen	cy table.
iii) Explain with example	e a) scan function	on b) combine function	
iv)Obtain mode of F- dis	tribution with (n	n, n ₂) d. f. ESTD JUNE 1964 FORHAPUR - M	ALLEGE * CO

Vivekanand College, Kolhapur (Autonomous) Department of Statistics B.Sc – III Internal Examination (2019-20)

Notice

Date: 10/02/2020

All the students of B.Sc. – III are hereby informed that, the Internal Examination of Semester – VI will be held as per following time table.

Sr.No.	Date	Time	Paper No.
1	17/02/2020	11:30 am to 11.45am	Paper - XIII : Probability Theory
2	18/02/2020		Paper - XIV : Statistical Inference-II
3	20/02/2020		Paper - XV : Sampling Theory
4	22/02/2020		Paper – XVI: Quality Management and Data Mining

Nature of Question Paper (Total Marks = 10)

10 MCQ's each carrying 1 mark

IT OF STATISTICS IVEKANAND COLLEGE, KOLHAPUR (ALITONOMOUS)

Vivekanand College, Kolhapur Department of Statistics B.Sc. Part-III (Semester -VI) Mid-Term Examination, 2020 Sampling Techniques-I (Paper No. XV) Date: 20/02/2020 Total Marks: 10 Instructions: 1) All questions are compulsory. 2) Use of calculations and statistical tables is allowed. O1) Select correct alternative: 1) When frame is not available or costly----- scheme helps in reducing cost of survey. a) SRSWR b) SRSWOR c) Stratified Sampling d) Cluster Sampling 2) A systematic sample of size 20 is drawn from a population of size 120, then probability of getting any sample out of all possible systematic samples of same size is ----a) 1/20 b) 1/6 c) 6/20 d) None of these 3) If the population is in a linear trend then ratio V $(y)_{st}$: V(y)_{sy}: V(y)_{wor} is----c)1/n:1:na) n:1/n:1 b) 1:n:1/nd)1/n:n:14) The probability of not selecting a specified unit in SRSWOR of n units from population on N units is----c) n/N d) 1-n/N a) 1/n b) 1 - (1/n)5) In stratified random sampling with stratum sizes N1=800, N2=300 and stratum variances S_{12} = 144, $S_{22} = 400$ under Neyman allocation, the ratio of sample sizes n1/n2 is given by ----9 et 11.94 d) 11.10 b) a) 12.50 6) In sampling for proportion, if N is large and samples are large then V(p) = ----a) p/q (N-n)PQ/n c) (N-1)PQ/n d) None of these. 7) Error committed in presentation of data are categorized as-----a) Sampling error b) population error c) Non-sampling error d) standard error 8) Systematic sampling becomes more precise than SRSWOR if intra-class correlation becomesb) Negative c) zero a) Positive d) None of these 9) In optimum allocation sample size from each stratum is proportional to-----b) Stratum variability c) both a) and b) c) bour ..., rue? b) standard error can not one? NAND COLLEG ESTD d) either a) or b a) Stratum size 10) Which of the following statement is not true? a) Standard error cannot be zero All the above. c) Standard error can be negative. *

YAPUR -

[8]