
DECISION TREE

• What it is?

• python implementation

• Use cases

Mr. Ashok B. Bhosale

Assistant Professor

Department of Statistics

Vivekanand College, Kolhapur

WHAT IT IS

Slide no. 2

• Decision tree is a natural process of conscious and subconscious interpretation of rules and taking

actions.

• Data Science, does the same !!

Is this real

that such simple algorithm can solve

complicated classification problem?

The answer is: Yes!

DECISION TREES

• Decision Trees (DTs) are a non-parametric supervised

learning method used for classification and regression.

• The goal is to create a model that predicts the value of

a target variable by learning simple decision rules

inferred from the data features.

• For instance, in the example below, decision trees learn

from data to approximate a sine curve with a set of if-

then-else decision rules.

• The deeper the tree, the more complex the decision

rules and the fitter the model.

Slide no. 3

TYPES OF DECISION TREES

Categorical Variable Decision Tree Continuous Variable Decision Tree

A decision tree which has a categorical target variable A decision tree which has continuous target variable

Example:-

Let’s say we have a problem to predict whether a bike is good

or not. This can be judged by using a decision tree classifier.

However, to qualify the bike into the good or bad category,

mileage becomes an important factor.

Mileage is measured using a contiguous value hence it can be

measured using the decision tree regressor.

Slide no. 4

TERMS

Terms Description

Root Node It represents the entire population or sample, and this further gets

divided into two or more homogeneous sets.

Splitting It is a process of dividing a node into two or more sub-nodes.

Decision Node When a sub-node splits into further sub-nodes, then it is called a

decision node.

Leaf/ Terminal Node Nodes that do not split are called Leaf or Terminal nodes.

Pruning When we remove sub-nodes of a decision node, this process is called

pruning.

You can say the opposite process of splitting.

Branch / Sub-Tree: A sub-section of entire tree is called a branch or sub-tree.

Parent and Child Node: A node, which is divided into sub-nodes is called the parent node of

sub-nodes whereas sub-nodes are the children of a parent node.

Slide no. 5

DECISION CRITERIA

• So how do we decide on which feature/column/dimension to start with?

• It is not done randomly !!! It is based on some considerations

• Each time a subset is created out of parent set, the considerations are repeated

• Why? Because the decision tree algorithm is a greedy one!

• Algorithms behind the decision tree

• ID3 - uses Entropy function and Information gain as metrics..

• C4.5 or C5.0

• CART - uses Gini Index(Classification) as metric.

• CHAID: Chi-Square Automatic Interaction Detection

• MARs

Slide no. 6

TREE ALGORITHMS: ID3, C4.5, C5.0 AND CART

ID3 (Iterative

Dichotomiser 3

C4.5 C5.0 CART (Classification and

Regression Trees)

• Developed in 1986 by Ross

Quinlan.

• The algorithm creates a

multiway tree, finding for

each node the categorical

feature that will yield the

largest information gain for

categorical targets.

• Trees are grown to their

maximum size and then a

pruning step is usually

applied to improve the ability

of the tree to generalize the

unseen data.

• is the successor to ID3

• removed the restriction that

features must be categorical

• converts the trained trees (i.e.

the output of the ID3

algorithm) into sets of if-then

rules

• Quinlan’s latest version release

under a proprietary license.

• It uses less memory and builds

smaller rulesets than C4.5

while being more accurate.

• is very similar to C4.5, but it

differs in that it supports

numerical target variables

(regression)

• does not compute rule sets.

• CART constructs binary trees

using the feature and threshold

that yield the largest

information gain at each node.

• scikit-learn uses an optimized

version of the CART algorithm.

Slide no. 7

ENTROPY (IMPURITY)

• According to Wikipedia, … Entropy refers to disorder or uncertainty.

• Definition: Entropy is the measures of impurity, disorder or uncertainty in a bunch of examples.

Slide no. 8

Entropy = − ∑pj log2pj
There are 3 commonly used impurity

measures used in binary decision trees:

- Entropy,

- Gini index,

- and Classification Error.

MATHEMATICAL INTUITION OF ENTROPY

Slide no. 9

• A set is tidy if it contains only items with the same label and messy if it is a mix of items with different labels.

• With no item with label 1 (p=0) or if the set is full of items with Label 1 (p=1), the entropy is zero. LEAST MESSY

• With half in Label 1, half in Label 2 (p=1/2), the entropy is maximal (equals to 1) .. MOST MESSY, symmetric , among

the two categories to classify, there not one which is messier than the other.

minimal value at equal

class distribution

minimal value if only

1 class left in S

MEANING

• Entropy = 0, This is not a good set for training.

• Entropy = 1, This is a good set for training.

• The entropy is an absolute measure which provides a number between 0 and 1,

Slide no. 10

EVOLUTION OF ENTROPY

• In decision trees, at each branching, the input set is split in 2.

• Compare entropy before and after the split.

• E.g. start with a messy set with entropy one (half/half, p=q).

• In the worst case, it could be split into 2 messy sets where half of the items are labeled 1 and the other

half have Label 2 in each set. Hence the entropy of each of the two resulting sets is 1. In this scenario, the

messiness has not changed

• We can not sum the entropies of the two sets.

• A solution, often used in mathematics, is to compute the mean entropy of the two sets. In this case, the

mean is one.

• However, in decision trees, a weighted sum of entropies is computed instead (weighted by the size of the

two subsets)

Slide no. 11

IT MEANS …

Slide no. 12

• N1 and N2 are the number of items of each sets after the split and E1 and E2 are their

respective entropy.

• It gives more importance to the set which is larger

GENERALIZATION

Slide no. 13

If you have more than 2 labels, you can generalize the Entropy formula as follows:

INFORMATION GAIN

Definition: Information gain (IG) measures how much “information” a feature gives us about the class.

Why it matters ?

• Decision Trees algorithm will always try to maximize Information gain.

• An attribute with highest Information gain will be tested/split first.

• Information gain = entropy(parent) – [weighted average] * entropy(children)

Slide no. 14

EXAMPLE – USING IMPURITY (ENTROPY)

• STEP – 1 - Calculate entropy of the target.

• current dataset S.

• compute the Entropy H(S) on S as follows:

where K is the number of classes,

p(yj) is the proportion of number of

elements of p(yj) class to the number of

entire elements in output of S

• H(S) tell us how uncertain our dataset is.
It ranges from 0 to 1, which 0 is the case when

the output contains only one class (pure),

whereas 1 is the most uncertain case.

Slide no. 15

H(S) 0 – pure set H(S) 1 – most uncertain

when the proportion of each

class is equal to others’

if the number of YES is equal to the number of NO on the considered subset, then it’s easy

to see that there is a big chance that it can’t be fully classified (that’s why we call it the

most uncertain case).

EXAMPLE – USING IMPURITY (ENTROPY)

• STEP – 2 The dataset is then split on the different attributes. The entropy for each branch is calculated.

Then it is added proportionally, to get total entropy for the split. The resulting entropy is subtracted from

the entropy before the split. The result is the Information Gain, or decrease in entropy.

• Information Gain is computed separately on each feature of the current dataset S,

• The value indicates how much the uncertainty in S was reduced after splitting S using feature A.

• Lastly, split the current dataset S using the feature which has the highest Information Gain.

Slide no. 16

EXAMPLE – USING IMPURITY (ENTROPY)

• STEP – 3 Choose attribute with the largest information gain as the decision node, divide the dataset by its

branches and repeat the same process on every branch.

Slide no. 17

DATASET

Weather Temperature Humidity Injure Mood RUN

clear <10 <70 slightly happy NO

shower 20~30 >80 fit stressed YES

storm 10~20 >80 fit happy NO

shower 10~20 >80 slightly stressed YES

clear >30 70~80 fit lazy YES

storm 20~30 >80 fit stressed NO

clear >30 70~80 severe happy NO

clear 10~20 <70 severe stressed NO

shower 10~20 70~80 slightly happy NO

shower >30 >80 fit happy YES

storm 20~30 70~80 slightly happy NO

clear 10~20 <70 slightly happy ?

Slide no. 18

Training

data

Test data

features
Target/label/prediction

HOW THE ALGORITHM WORKS

weather

clear shower storm

Slide no. 19

Weather Temperature Humidity Injure Mood RUN

clear <10 <70 slightly happy NO

clear >30 70~80 fit lazy YES

clear >30 70~80 severe happy NO

clear 10~20 <70 severe stressed NO

Weather Temperature Humidity Injure Mood RUN

shower 20~30 >80 fit stressed YES

shower 10~20 >80 slightly stressed YES

shower 10~20 70~80 slightly happy NO

shower >30 >80 fit happy YES

Weather Temperature Humidity Injure Mood RUN

storm 10~20 >80 fit happy NO

storm 20~30 >80 fit stressed NO

storm 20~30 70~80 slightly happy NO

Temperature Humidity Injure Mood RUN

<10 <70 slightly happy NO

>30 70~80 fit lazy YES

>30 70~80 severe happy NO

10~20 <70 severe stressed NO

Humidity Injure Mood RUN

70~80 fit lazy YES

70~80 severe happy NO

Temperature Humidity Injure Mood RUN

>30 >80 fit happy YES

10~20 >80 slightly stressed YES

10~20 70~80 slightly happy NO

20~30 >80 fit stressed YES

Continues …

EXAMPLE – HOW DID IT WORK ON PREVIOUS DATASET

Weather Temperature Humidity Injure Mood RUN

clear <10 <70 slightly happy NO

clear >30 70~80 fit lazy YES

clear >30 70~80 severe happy NO

clear 10~20 <70 severe stressed NO

shower >30 >80 fit happy YES

shower 10~20 >80 slightly stressed YES

shower 10~20 70~80 slightly happy NO

shower 20~30 >80 fit stressed YES

storm 10~20 >80 fit happy NO

storm 20~30 >80 fit stressed NO

storm 20~30 70~80 slightly happy NO

Slide no. 20

H(S) would be the entire original table

Entropy H(S) =

= -p(YES) log2p(YES) – p(NO) log2p(NO)

= -(4/11) log2(4/11) – (7/11) log2(7/11)

= 0.9457

EXAMPLE – HOW DID IT WORK ON PREVIOUS DATASET

Weather Temperature Humidity Injure Mood RUN

clear <10 <70 slightly happy NO

clear >30 70~80 fit lazy YES

clear >30 70~80 severe happy NO

clear 10~20 <70 severe stressed NO

shower >30 >80 fit happy YES

shower 10~20 >80 slightly stressed YES

shower 10~20 70~80 slightly happy NO

shower 20~30 >80 fit stressed YES

storm 10~20 >80 fit happy NO

storm 20~30 >80 fit stressed NO

storm 20~30 70~80 slightly happy NO

Slide no. 21

Next, we will compute Information Gain on each

feature. For weather feature

• 3 possible values: clear, shower and storm.

• clear - p(clear) = 4/11

- YES 1

- NO 3

- Entropy H(clear)

= -p(YES) log2p(YES) – p(NO) log2p(NO)

= -(1/4) log2(1/4) – (3/4) log2(3/4)

= 0.8113

• shower - p(shower) = 4/11

- YES 3

- NO 1

- Entropy H(Shower)

= -p(YES) log2p(YES) – p(NO) log2p(NO)

= -(3/4) log2(3/4) – (1/4) log2(1/4)

= 0.8113

• storm - p(storm) = 3/11

- YES 0

- NO 3

- Entropy H(storm)

= -p(YES) log2p(YES) – p(NO) log2p(NO)

= -(0/3) log2(0/3) – (3/3) log2(3/3)

= 0

EXAMPLE – HOW DID IT WORK ON PREVIOUS DATASET

Slide no. 22

So now we can compute the Information Gain on the Weather feature as follow

Continue repeat this process with other features, you will likely end up with results like this:

IG (Weather, S) = 0.3557

IG (Temperature, S) = 0.1498

IG (Humidity, S) = 0.2093

IG (Injure, S) = 0.2093

IG (Mood, S) = 0.2275

From the results above, IG on Weather has the highest

value, so use Weather as a splitting condition will have

the highest chance to reduce the uncertainty of dataset S,

and may lead to a good classification in the end.

EXAMPLE - ENTROPY OF TARGET

• 8 records with negative class and 8 records with positive class. So, we can directly estimate the entropy of

target as 1.

• IG for the entire data set

• E(8, 8) = -1 * [(p(+ve) * log(p(+ve))) + (p(-ve) * log(p(-ve)))]

• = -1 * [(8/16) * log2(8/16))) + ((8/16) * log2(8/16)))]

• = 1

Slide no. 23

Variable label A B C D

pos neg >= 5 >= 3.0 >= 4.2 >= 1.4

8 8 < 5 < 3.0 < 4.2 < 1.4

ENTROPY OF TARGET

• For the variable A,

• var A has value >=5 for 12 records out of 16 and 4 records with value <5 value.

• For Var A >= 5 & class == positive: 5/12
• For Var A >= 5 & class == negative: 7/12

• Entropy(5, 7) = -1 * ((5/12)*log2(5/12) + (7/12)*log2(7/12)) = 0.9799

• For Var A <5 & class == positive: 3/4
• For Var A <5 & class == negative: 1/4

• Entropy(3, 1) = -1 * ((3/4)*log2(3/4) + (1/4)*log2(1/4)) = 0.81128

• Entropy(Target, A) = P(>=5) * E(5,7) + P(<5) * E(3,1)

• = (12/16) * 0.9799 + (4/16) * 0.81128 = 0.937745

• IG = E(Target) – E(Target, A)

• = 1 – 0.937745 = 0.062255

Slide no. 24

ENTROPY OF TARGET

• For the variable B,

• var B has value >=3 for 12 records out of 16 and 4 records with value <3 value.

• For Var B >= 3 & class == positive: 8/12
• For Var B >= 3 & class == negative: 4/12

• Entropy(8, 4) = -1 * ((8/12)*log2(8/12) + (4/12)*log2(4/12)) = 0.39054

• For Var B <3 & class == positive: 0/4
• For Var B <3 & class == negative: 4/4

• Entropy(0, 4) = -1 * ((0/4)*log2(3/4) + (4/4)*log2(4/4)) = 0

• Entropy(Target, B) = P(>=5) * E(5,7) + P(<5) * E(3,1)

• = (12/16) * 0.39054 + (4/16) * 0 = 0.292905

• IG = E(Target) – E(Target, B)

• = 1 – 0.292905 = 0.707095

Slide no. 25

ENTROPY OF TARGET

• For the variable C,

• var C has value >= 4.2 for 6 records out of 16 and 10 records with value < 4.2 value.

• For Var C >= 4.2 & class == positive: 0/6
• For Var C >= 4.2 & class == negative: 6/6

• Entropy(0, 6) = -1 * ((0/6)*log2(0/6) + (6/6)*log2(6/6)) = 0

• For Var C <4.2 & class == positive: 8/10
• For Var C <4.2 & class == negative: 2/10

• Entropy(8, 2) = 0.72193

• Entropy(Target, C) = P(>=4.2) * E(0, 6) + P(<4.2) * E(8, 2)

• = (6/16) * 0 + (10/16) * 0.72193 = 0.4512

• IG = E(Target) – E(Target, C)

• = 1 – 0.4512 = 0. 5488

Slide no. 26

ENTROPY OF TARGET

• For the variable D,

• var D has value >= 1.4 for 5 records out of 16 and 11 records with value < 1.4 value.

• For Var D >= 1.4 & class == positive: 0/5
• For Var D >= 1.4 & class == negative: 5/5

• Entropy(0, 5) = 0

• For Var D < 1.4 & class == positive: 8/11
• For Var D < 1.4 & class == negative: 3/11

• Entropy(8, 3) = -1 * ((8/11)*log2(8/11) + (3/11)*log2(3/11)) = 0.84532

• Entropy(Target, D) = P(>= 1.4) * E(0, 5) + P(< 1.4) * E(8, 3)

• = 5/16 * 0 + (11/16) * 0.84532 = 0.5811575

• IG = E(Target) – E(Target, D)

• = 1 – 0.5811575 = 0. 41189

Slide no. 27

DECISION

Target Target

Positive Negative Positive Negative

A
>= 5.0 5 7

B

>= 3.0 8 4

<5 3 1 < 3.0 0 4

Information Gain of A = 0.062255 Information Gain of B= 0.7070795

Target Target

Positive Negative Positive Negative

C
>= 4.2 0 6

D

>= 1.4 0 5

< 4.2 8 2 < 1.4 8 3

Information Gain of C= 0.5488 Information Gain of D= 0.41189

Slide no. 28

• build a decision tree.

• place the attributes on

the tree according to

their values.

• An Attribute with better

value than other should

position as root

• A branch with entropy 0

should be converted to a

leaf node.

• A branch with entropy

more than 0 needs

further splitting.

AND THE TREE …

Slide no. 29

SHORTCOMINGS OF THE ENTROPY MEASURE

• The information gain measure is biased towards the attributes that have more number of unique values

• Problem: If an attribute has a large number of values probably the resulting tree will be larger

• The reason for that bias resides in the weight given to the values

Slide no. 30

GINI INDEX

• Gini Index is a metric to measure how often a randomly chosen element would be incorrectly identified.

• It means an attribute with lower gini index should be preferred.

Slide no. 31

Slide no. 32

INTUITION

• According to scikit-learn

documentation, gini plays the same

role as entropy

• As we can see, there is not much

differences.

GINI INDEX

Slide no. 33

• For the variable A,

• var A has value >=5 for 12 records out of 16 and 4 records with value <5 value.

• For Var A >= 5 & class == positive: 5/12

• For Var A >= 5 & class == negative: 7/12

• gini(5, 7) = 1- ((5/12)^2 + (7/12)^2) = 0.4860

• For Var A <5 & class == positive: 3/4

• For Var A <5 & class == negative: 1/4

• gini(3,1) = 1- ((3/4)^2 + (1/4)^2) = 0.375

• By adding weight and sum each of the gini indices:

• gini(Target, A) = (12/16) * 0.4860 + (4/16) * 0.375 = 0.45825

GINI INDEX

• For the variable B,

• var B has value >=3 for 12 records out of 16 and 4 records with value <3 value.

• For Var B >= 3 & class == positive: 8/12

• For Var B >= 3 & class == negative: 4/12

• gini(8,4) = 1- ((8/12)2 + (4/12)2) = 0.446

• For Var B <3 & class == positive: 0/4

• For Var B <3 & class == negative: 4/4

• gin(0,4) = 1- ((0/4)2 + (4/4)2) = 0

• By adding weight and sum each of the gini indices:

• gini(Target, B) = (12/16) * 0.446 + (4/16) * 0 = 0.3345

Slide no. 34

DECISION

Target Target

Positive Negative Positive Negative

A
>= 5.0 5 7

B
>= 3.0 8 4

<5 3 1 < 3.0 0 4

Gini Index of X1 = 0.45825 Gini Index of X2= 0.3345

Target Target

Positive Negative Positive Negative

C
>= 4.2 0 6

D
>= 1.4 0 5

< 4.2 8 2 < 1.4 8 3

Gini Index of X3= 0.2 Gini Index of X4= 0.273

Slide no. 35

DECISION BOUNDARIES

Slide no. 36

X2

X1

Decision Trees divide the input

space into axis-parallel rectangles

and label each rectangle with one

of the K classes

ENTROPY VS GINI

• Gini is intended for continuous attributes,

• Entropy for attributes that occur in classes

• Entropy may be a little slower to compute

Slide no. 37

DECISION TREE VARIATIONS

Input/ predictor variables Target/ output variable ML type Decision criteria

Discreet Discreet Classification (entropy, gini)

Discreet Continuous Regression (entropy, gini)

Continuous Continuous Regression (threshold split)

Continuous Discreet Classification (threshold split)

Continuous/ Discreet Discreet Classification Mix

Continuous/ Discreet Continuous Regression Mix

Slide no. 38

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

HOURS STUDIED GRADE A ON TEST

4 N

5 Y

8 N

12 Y

15 Y

Slide no. 39

data relating the number of hours various students studied in an attempt to determine its effect on their test performance

Sort the feature (hours studied)

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

Slide no. 40

Step 1: start by calculating entropy of the data set itself

E(D) = - (3/5 log2(3/5) + 2/5 log2(2/5)) = .529 + .442 = .971

A ON TEST LOWER THAN A

Overall 3 2

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

Slide no. 41

Step 2: let's iterate through and see which splits give us the maximum entropy gain. To find a split, we average two neighboring values in

the list.

HOURS
STUDIE

D

GRADE A
ON TEST

SPLIT
POINT #

SPLIT VALUE

4 N 1 (4+ 5)/2 = 4.5

5 Y

8 N

12 Y

15 Y

Now we get 2 bins, as follows:

A ON TEST LOWER THAN A

<=4.5 0 1

>4.5 3 1

calculate entropy for each bin and find the information gain of this split:

E(D <= 4.5) = - (1/1 log2(1/1) + 0/1 log2(0/1)) = 0 + 0 = 0

E(D > 4.5) = - (1/4 log2(1/4) + 3/4 log2(3/4)) = .311 + .5 = .811

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

Slide no. 42

Step 2: let's iterate through and see which splits give us the maximum entropy gain. To find a split, we average two neighboring values in

the list.

HOURS
STUDIE

D

GRADE A
ON TEST

SPLIT
POINT #

SPLIT VALUE

4 N 1 (4+ 5)/2 = 4.5

5 Y

8 N

12 Y

15 Y

Now we get 2 bins, as follows:

A ON TEST LOWER THAN A

<=4.5 0 1

>4.5 3 1

calculate entropy for each bin and find the information gain of this split:

E(D <= 4.5) = - (1/1 log2(1/1) + 0/1 log2(0/1)) = 0 + 0 = 0

E(D > 4.5) = - (1/4 log2(1/4) + 3/4 log2(3/4)) = .311 + .5 = .811

Enet = 1/5 (0) + 4/5 (.811) = .6488

Gain = .971 - .6488 = .322

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

Slide no. 43

Step 2: let's iterate through and see which splits give us the maximum entropy gain. To find a split, we average two neighboring values in

the list.

HOURS
STUDIE

D

GRADE A
ON TEST

SPLIT
POINT #

SPLIT VALUE

4 N

5 Y 2 (5 + 8)/2 = 6.5

8 N

12 Y

15 Y

Now we get 2 bins, as follows:

A ON TEST LOWER THAN A

<=6.5 1 1

>6.5 2 1

calculate entropy for each bin and find the information gain of this split:

E(D <= 6.5) = - (1/2 log2(1/2) + 1/2 log2(1/2)) = 1

E(D > 6.5) = - (2/2 log2(2/2) + 1/3 log2(1/3)) = .389 + .528 = .917

Enet = 2/5 (1) + 3/5 (.917) = .950

Gain = .971 - .950 = .021

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

Slide no. 44

Step 2: let's iterate through and see which splits give us the maximum entropy gain. To find a split, we average two neighboring values in

the list.

HOURS
STUDIE

D

GRADE A
ON TEST

SPLIT
POINT #

SPLIT VALUE

4 N

5 Y

8 N 3 (8+12)/2 = 10

12 Y

15 Y

Now we get 2 bins, as follows:

A ON TEST LOWER THAN A

<=10 1 2

>10 2 0

calculate entropy for each bin and find the information gain of this split:

E(D <= 10) = - (1/3 log2(1/3) + 2/3 log2(2/3)) = .917

E(D > 10) = - (2/2 log2(2/2) + 0/0 log2(0/0)) = 0

Enet = 2/5 (0) + 3/5 (.917) = ..55

Gain = .971 - .55 = .421

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

Slide no. 45

Step 2: let's iterate through and see which splits give us the maximum entropy gain. To find a split, we average two neighboring values in

the list.

HOURS
STUDIE

D

GRADE A
ON TEST

SPLIT
POINT #

SPLIT VALUE

4 N

5 Y

8 N

12 Y 4 (12 + 15)/2 =
13.5

15 Y

Now we get 2 bins, as follows:

A ON TEST LOWER THAN A

<=13.5 2 2

>13.5 1 0

calculate entropy for each bin and find the information gain of this split:

E(D <= 13.5) = - (2/2 log2(2/2) + 2/2 log2(2/2)) = 1

E(D > 13.5) = - (1/1 log2(1/1) + 0/1 log2(0/1)) = 0

Enet = 4/5 (1) = .80

Gain = .971 - .80 = .117

NUMERIC VARIABLES - ENTROPY-BASED DISCRETIZATION

• Step 3

• After calculating everything, we find that our best split is split 3, which gives us the best information gain of .421. We will

partition the data there!

• According to the algorithm, we now can further bin our attributes in the bins we just created. This process will continue until

we satisfy a termination criteria.

Slide no. 46

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

class_weight=None, presort=False)

• criterion : string, optional (default=”gini”)

• The function to measure the quality of a split.

• Supported criteria are

• “gini” for the Gini impurity

• “entropy” for the information gain.

Slide no. 47

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

class_weight=None, presort=False)

• max_depth : int or None, optional (default=None)

• The maximum depth of the tree.

• If None, then nodes are expanded until all leaves are pure or until all leaves contain less than

min_samples_split samples.

Slide no. 48

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

class_weight=None, presort=False)

• min_samples_split : int, float, optional (default=2)

• The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil (min_samples_split * n_samples) are the minimum

number of samples for each split.

Slide no. 49

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

class_weight=None, presort=False)

• min_samples_leaf : int, float, optional (default=1)

• The minimum number of samples required to be at a leaf node. A split point at any depth will only be

considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This

may have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum

number of samples for each node.

Slide no. 50

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)

• max_features : int, float, string or None, optional (default=None)

• The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features * n_features) features are considered at each
split.

• If “auto”, then max_features=sqrt(n_features).
• If “sqrt”, then max_features=sqrt(n_features).
• If “log2”, then max_features=log2(n_features).
• If None, then max_features=n_features.

Slide no. 51

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,
presort=False)

• Weights associated with classes in the form {class_label: weight}.

• If not given, all classes are supposed to have weight one.

• For multi-output problems, a list of dicts can be provided in the same order as the columns of y.

• for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For
example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}]
instead of [{1:1}, {2:5}, {3:1}, {4:1}].

• The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class
frequencies in the input data as n_samples / (n_classes * np.bincount(y))

Slide no. 52

ATTRIBUTES

• classes_ : array of shape = [n_classes] or a list of such arrays, The classes labels (single output problem), or a list of arrays of

class labels (multi-output problem).

• feature_importances_ : array of shape = [n_features] , Return the feature importances.

• max_features_ : int, The inferred value of max_features.

• n_classes_ : int or list, The number of classes (for single output problems), or a list containing the number of classes for each

output (for multi-output problems).

• n_features_ : int, The number of features when fit is performed.

• n_outputs_ : int, The number of outputs when fit is performed.

Slide no. 53

REGRESSION WITH DECISION TREES

• Replacing INFORMATION GAIN with Standard Deviation Reduction

• A decision tree is built top-down from a root node and involves partitioning the data into subsets that

contain instances with similar values (homogeneous)

• We use standard deviation to calculate the homogeneity of a numeric sample

• If the numeric sample is completely homogeneous, it’s S.D = 0

Slide no. 54

STANDARD DEVIATION REDUCTION

• The SD reduction is based on the decrease in the SD after a dataset is split on an attribute

• Constructing a decision tree is all about finding attribute that returns the highest SD reduction

• The split is done on the feature which returns max SD reduction

• Dataset is divided based on the values of the selected feature

• A branch set with SD > 0 needs further splitting, the process is repeated on the non-leaf branches, until all
data is processed

• When the number of instances is more than 1 at a leaf node, we calculate the average as the final value for
the prediction

Slide no. 55

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

presort=False)

• criterion : string, optional (default=”mse”)

• The function to measure the quality of a split.

• Supported criteria are

• “mse” for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes

the L2 loss using the mean of each terminal node,

• “friedman_mse”, which uses mean squared error with Friedman’s improvement score for potential splits, and

• “mae” for the mean absolute error, which minimizes the L1 loss using the median of each terminal node.

Slide no. 56

SCIKIT LEARN PARAMETERS

• class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

presort=False)

• max_depth : int or None, optional (default=None)

• min_samples_split : int, float, optional (default=2)

• min_samples_leaf

• min_weight_fraction_leaf : float, optional (default=0.)

• max_features : int, float, string or None, optional (default=None)

Slide no. 57

ATTRIBUTES

• feature_importances_ : array of shape = [n_features] - Return the feature importances.

• max_features_ : int, - The inferred value of max_features.

• n_features_ : int - The number of features when fit is performed.

• n_outputs_ : int - The number of outputs when fit is performed.

Slide no. 58

USE CASES

• Building knowledge management platforms for customer service that improve first call resolution, average handling time, and

customer satisfaction rates

• In finance, forecasting future outcomes and assigning probabilities to those outcomes

• Binomial option pricing predictions and real option analysis

• Customer’s willingness to purchase a given product in a given setting, i.e. offline and online both

• Product planning; for example, Gerber Products, Inc. used decision trees to decide whether to continue planning PVC for

manufacturing toys or not

• General business decision-making

• Loan approval

Slide no. 59

ADVANTAGES

• Simple to understand and to interpret. Trees can be visualized.

• Requires little data preparation.

• Other techniques often require

• data normalization,

• dummy variables need to be created

• blank values to be removed.

• Able to handle both numerical and categorical data.

• Able to handle multi-output problems.

• Resistant to outliers, hence require little data preprocessing

• Highly flexible hypothesis space, as the # of nodes (or depth) of tree increases, decision tree can represent

increasingly complex decision boundaries

Slide no. 60

DISADVANTAGES

• Prone to overfitting (overly-complex)

• Can create biased learned trees if some classes dominate.

• It is therefore recommended to balance the dataset prior to fitting with the decision tree.

• Decision trees can be unstable because small variations in the data might result in a completely different tree being generated.

• This problem is mitigated by using decision trees within an ensemble.

Slide no. 61

DECISION TREE - OVERFITTING

• Overfitting is a significant practical difficulty for decision tree models and many other predictive models.

• Overfitting happens when the learning algorithm continues to develop hypotheses that reduce training set

error at the cost of an increased test set error.

• There are several approaches to avoiding overfitting in building decision trees.

• Pre-pruning that stop growing the tree earlier, before it perfectly classifies the training set.

• Post-pruning that allows the tree to perfectly classify the training set, and then post prune the tree.

• Practically, the second approach of post-pruning overfit trees is more successful because it is not easy to

precisely estimate when to stop growing the tree.

Slide no. 62

TIPS ON PRACTICAL USE

• Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to

number of features is important, since a tree with few samples in high dimensional space is very likely to overfit.

• Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a

better chance of finding features that are discriminative.

• Visualize your tree as you are training by using the export function.

• Use max_depth=3 as an initial tree depth to get a feel for how the tree is fitting to your data and then increase

the depth.

• Remember that the number of samples required to populate the tree doubles for each additional level the tree

grows too. Use max_depth to control the size of the tree to prevent overfitting.

Slide no. 63

STEPS

The important step of tree pruning is to define a criterion be used to determine the correct final tree size

using one of the following methods:

1. Use a distinct dataset from the training set (called validation set), to evaluate the effect of post-pruning

nodes from the tree.

2. Build the tree by using the training set, then apply a statistical test to estimate whether pruning or

expanding a particular node is likely to produce an improvement beyond the training set.

• Error estimation

• Significance testing (e.g., Chi-square test)

3. Minimum Description Length principle : Use an explicit measure of the complexity for encoding the

training set and the decision tree, stopping growth of the tree when this encoding size (size(tree) +

size(misclassifications(tree)) is minimized.

Slide no. 64

Slide no. 65

TIPS ON PRACTICAL USE

• Use min_samples_split or min_samples_leaf to ensure that multiple samples inform every decision in the
tree, by controlling which splits will be considered.

• A very small number will usually mean the tree will overfit, whereas a large number will prevent the tree
from learning the data.

• Try min_samples_leaf=5 as an initial value. If the sample size varies greatly, a float number can be used as
percentage in these two parameters.

• While min_samples_split can create arbitrarily small leaves, min_samples_leaf guarantees that each leaf
has a minimum size, avoiding low-variance, over-fit leaf nodes in regression problems.

• For classification with few classes, min_samples_leaf=1 is often the best choice.

Slide no. 66

TIPS ON PRACTICAL USE

• Balance your dataset before training to prevent the tree from being biased toward the classes that are dominant.

• Class balancing can be done by sampling an equal number of samples from each class, or preferably by normalizing the sum of

the sample weights (sample_weight) for each class to the same value.

• Also note that weight-based pre-pruning criteria, such as min_weight_fraction_leaf, will then be less biased toward dominant

classes than criteria that are not aware of the sample weights, like min_samples_leaf.

• If the samples are weighted, it will be easier to optimize the tree structure using weight-based pre-pruning criterion such as

min_weight_fraction_leaf, which ensure that leaf nodes contain at least a fraction of the overall sum of the sample weights.

• If the input matrix X is very sparse, it is recommended to convert to sparse csc_matrix before calling fit and sparse

csr_matrix before calling predict. Training time can be orders of magnitude faster for a sparse matrix input compared to a

dense matrix when features have zero values in most of the samples.

Slide no. 67

