Probability Distributions

Ms. Ashiyana M. Makandar Assistant Professor
Department of Statistics
Vivekanand College, Kolhapur

What is distribution?

- Frequency distribution:
- Binomial distribution
- Poisson distribution
- Normal Distribution

What is probability distribution?

- If rolling a dice, probability of getting every single output is $1 / 6$
- $P(1)=1 / 6$
- $P(2)=1 / 6$
- $P(3)=1 / 6$
- $P(4)=1 / 6$
- $P(5)=1 / 6$
- $P(6)=1 / 6$

Flipping a coin

- $P(H)=1 / 2$
- $\mathrm{P}(\mathrm{T})=1 / 2$
- Flipping two coins together/ flipping one coin two times
- In above case what is the probability of getting zero heads.

1 $^{\text {st }}$ event	$2^{\text {nd }}$ event
H	H
H	T
T	H
T	T

Observation

- When there are both occurrences of tail that means there are not head
- From above observation table $1 / 4$ chance not to get head in both evidences
- $\mathrm{P}(\mathrm{H}, \mathrm{H})=1 / 4=0.25$
- Probability of getting one head is $\mathrm{P}(\mathrm{T}, \mathrm{H})$ or $\mathrm{P}(\mathrm{H}, \mathrm{T})$
- $\mathrm{P}(\mathrm{T}, \mathrm{H})$ or $\mathrm{P}(\mathrm{H}, \mathrm{T})=2 / 4=0.50$
- $P(T, T)=1 / 4=0.25$

Glimpse

- If the same flipping coins or rolling dice event occurs many times then calculating probability will become a difficult task.
- The same challenge can be handled using statistical concepts, software and coding.
- The distribution graph will help to see the probability distribution.

Glimpse

- Sum of the area under probability distribution is always 1.
- Total probability is always 1.
- Type of data can be discrete or continuous

Binomial
 distribution

Properties

- More and more experiments should be happened.
- Each trial can result in just two possible outcome. Like success or failure, sing in or log out, accepted or rejected etc.....
- Probability of success is denoted by p
- Every trial is independent. That means it is not dependant on previous outcome.

Binomial distribution

- Simply count number of event and Outcome of experiment is in two forms.
- Gives probability of success out of total number of experiments
- If $P(w)=0.75$ is probability for winning
$-P(I)=0.25$ is probability for loosing
- Then out of 5 events what is the probability to win ?

Binomial

- K=number of successful event
- Probability of successes
- Out of 5 events what is the chance of success?

$$
f(k ; p)=p^{k}(1-p)^{1-k} \quad \text { for } k \in\{0,1\}
$$

Formula for binomial probability

- $P(x)=n c_{x}^{*} p^{\wedge} x^{*}(1-p)^{\wedge}(n-x)$
- $P(x)=(n!/(x!(n-x)!))^{*} P^{\wedge} x{ }^{*}(1-p)^{\wedge}(n-x)$
- X:number of success result from binomial experiment.
- N : the number of trials in the binomial experiment.
- p : The probability of success on an individual trial
- $P(x)$ the probability that n trial binomial experiments results in exactly x successes, when the probability of success on an individual trial is p.

Formula

This starts the count of number of ways event can occur.
$P(\mathrm{x})=$

This is the probability of success for x trials.

This is the probabillty of fallure for the x trials.
number of ways event can occur.

This deletes duplications.

Example -1

- If we are flipping 4 coins then what is the probability of getting 1 head?
- $P(x)=(n!/(x!(n-x)!)){ }^{*} P^{\wedge} x{ }^{*}(1-p)^{\wedge}(n-x)$
- $P(1)=(4!/ 1!* 3!)^{*} 0.5^{*} 1^{*}(1-0.5)^{\wedge}(4-1)$
- $P(1)=4^{*} 0.5^{*} 0.5^{\wedge} 3$
- $P(1)=4^{*} 0.5^{\wedge} 4=0.25$

Example-2

- If win is 0 means losing of 5 matches ie. [L,L,L,L,L]
- Probability is (0.25)**5
- If 1 win event then Probability $=(0.75)^{*}(0.25)^{* *} 4$
- Hence we can say
- $P(x=3)+P(x=4)+P(x=5)$
- The same can be done as
- 5C3*(0.75)**3* 0.25$)^{* *}(5-3)$
- Outcome is the probability to win the series.

Example-3

- Suppose a toy production company has 12% defect rate. Buyer decided to purchase after testing random 20 toys. Buyer will accept this if there are 2 or less defective toys. What is the probability of getting accepted?
- $p=0.12, n=20, x=0,1,2$
- $P(0)=20!/\left(0!^{*}(20-0)!\right)^{*} 0.12^{\wedge} 0^{*}(1-0.12)^{\wedge}(20-0)$
- $P(1)=20!/\left(1!^{*}(20-1)!\right) * 0.12^{\wedge} 1^{*}(1-0.12)^{\wedge}(20-1)$
- $P(2)=20!/\left(2!^{*}(20-2)!\right)^{*} 0.12^{\wedge} 2^{*}(1-0.12)^{\wedge}(20-2)$
- $P(o)=P(0)+p(1)+p(2)=0.563132$

outcome

- Once we are having binomial distribution, we can find out mean, variance and standard deviation of the distribution.
- Mean=n*p
- Variance $=n^{*}$ p* $^{*}(1-p)$
- Standard deviation $=\operatorname{sqrt}\left(\mathrm{n}^{*} \mathrm{p}^{*}(1-\mathrm{p})\right)$

Poisson distribution

Binomial vs. Poisson

Binomial	Poisson	
	Similarities:	
	1)	Used for discrete distribution

Properties

- Experiment results in outcomes that can be classified as success or failure, true or false, yes or no etc...
- Average number of success in the specific region is known.
- Outcomes are random. Occurrence of one outcome does not influence the chance of another outcome of interest.
- The outcome of interest is rare relative to the possible outcomes
- E.g. Queue at the counter, road accident, etc

Poisson's distribution

- outcome is in count, time or range
- Poisson's distribution is used when we want probability between time period.
- E.g. how many of students will be placed?
- How many fraud cases except to see?
- Suppose there are 10 cars/ hrs in garage then what is the probability that there are 100 cars/day
- So here, we are considering hrs to calculate the probability for day.
- e: a constant equal to 2.71828
- μ : the number of success occurred in specific time interval or specific region
- X : is number of success
- $P: P(x ; \mu)$: The Poisson probability that exactly x success occur in a poisson experiment when the mean number of success is μ.

Example 1

- On a booking counter on the average 3.6 people come every 10 minutes on weekends. What is the probability of getting 7 people in 10 minute?
- $\mu=3.6$
- $X=7$
- $P(X, \mu)=\left(e^{\wedge-3.6}\right)^{*}\left(3.6^{\wedge 7}\right) / 7!$
- $P(X, \mu)=0.02732 * 7836.41 / 5040$
- $P(X, \mu)=0.0424$
- This means 4% chance of getting 7 people in 10 minute

Example-2

- Real estate company is selling 2 flats/ day what is the probability that company will sell 3 flats/days
- Here $\mu=2$ and $x=3$ is the goal
- After using the formula is gives probability as 0.18

Observation

- The mean of distribution is μ
- The variance is equal to μ

Normal distribution

Properties

- Continuous data
- Normal distribution is symmetric
- Long tail, bell shaped
- Mean, median/mode are same
- Shape of the curve defined by
- Mean
- Standard deviation

Properties

- If we have skewness in data set tail of the data is not distributed evenly.
- The probability of any particular value is 0
- The probability that X is greater than or less than a value = area under the normal curve in that direction
- For normal distribution of the data
- mean and variance could be any value
- range is from $-\infty$ to $+\infty$
- Entire area = 1
- Normal distribution shows the bell shape curve

Normal Distribution

- Most occurring distribution
- Standard normal distribution is also known as z-distribution
- Equal amount of data on both sides then we call is as balanced data set
- ML algorithm is trained based on normally distributed algorithm
- Formula to find probability of single value is

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Formula explained

- $\mu:$ mean
- σ : standard deviation
- $\pi: 3.14159$
- e: approximately 2.71828
- For z-distribution $\mu=0$ and $\sigma=1$

Z-value

- Z-value is also known as standard score
- $Z=(x-\mu) / \sigma$
- A bottle is having average volume as 150cc and the standard deviation is 2 cc . What percentage of bottles will have volume more than 153 cc
- $\mu=150$ cc
- $\sigma=2 \mathrm{cc}$
- $Z=(153-150) / 2=1.5$
- Hence z-score is 1.5
- Probability of area selection is 0.9332
- More than 153 bottles are $1-0.9332=0.06680=6.6 \%$

Z score

- Normal distribution calculating probability
- Area under normal curve is 1

Negative z

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08
	\vdots								
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049
-24	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066
-23	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087
-22	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113
-21	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146
-20	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301

Positive z

Example-1

- Scores in an exam are normally distributed with mean 65 and standard deviation of 9 . find the percent of the score.
- Less than 54
- At least 80
- Between 70 and 86

Less than 54

- This means $\mathrm{P}(\mathrm{x}<54)$
- $Z=(x-\mu) / \sigma=(54-65) / 9=-1.2222$
- Check in the negative z-score for row with -1.2 and column 0.02
- Corresponding area is 0.1112 i.e. Area to the left of $z=-$ 1.222 is 0.1112
- $P(x<54)=P(z<-1.222)=0.1112=11.12 \%$

At least 80

- $P(x>=80)=P(x>80)$
- $Z=(x-\mu) / \sigma=(80-65) / 9=1.67$
- In z table, check 1.6 against 0.07 equal to 0.9525
- $P(x>80)>P(z>1.67)=1-0.9525=0.0475=4.75 \%$

Between 70 and 86

- $\mathrm{Z}=(\mathrm{x}-\mu) / \sigma$
- For $x=70$
$-Z=(70-65) / 9=0.56$
- In z table, check 0.5 against 0.06 equal to 0.7123
- For $x=86$
$-\mathrm{Z}=(86-65) / 9=2.33$
- In z table, check 2.3 against 0.03 equal to 0.991

Between 70 and 86

- Finding the are between two z values from cumulative table is subtracting from large amount
- $P(70<x<85)=P(0.56<z<2.33)$
- $=P(z<2.33)-P(z<0.56)$
- =0.9901 -0.7123
- = $0.2778=27.78 \%$

Summary

Example 2

- Perfume bottle filled with the average volume of 150 cc and the standard deviation of 2 cc .
- What percentage of bottles will have the volume between 148 and 152 cc?
- $Z=(x-\mu) / \sigma$
- Here $\mu=150$ cc and $\sigma=2 c c$
- $Z 1=(148-150) / 2=-1$
- $Z 2=(152-150) / 2=1$
- $P(x)=1-0.1587-0.1587=0.6826$

Thank you

