Probability

Ms. Ashiyana M. Makandar
Assistant Professor
Department of Statistics
Vivekanand College, Kolhapur

- Two ways to calculate model:
- Classical model:
- Number of outcomes in which the event occurs/ Total number of possible outcomes of an experiment
- Relative Frequency
- Number of times an event occurred/ Total number of opportunities for an event to occur

Some terminologies

- Experiment/ Trial: some thing is done with expectation of the result
- Event /Outcome: Result of experiment
- Sample space: sample space of an experiment is the set of all possible result of that random experiment
- E.g. For an dice sample space is
- \{1,2,3,4,5,6\}
- For two dice sample space is:
- \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),\}

Types of event

- Mutually exclusive event:
- When two events can not occur at the same time
- Independent event:
- occurrence of event A does not change the probability of event B.
- Complementary event :
- The probability that event A will not occur is denoted by $P\left(A^{\prime}\right)$.

Mutually exclusive event

- Events which are no overlapping area in Venn diagram is the Mutually exclusive event.
- Event A and event B having totally different output and not having single common event.
- E.g. Event A is having outcome as $\{2,6\}$
- Event B is having outcome as $\{1,3,4,5\}$

Independent event

- Event B is not depend on event A
- E.g. After flipping the coin outcome is head, Which is not dependant on the previous event outcome.

Dependent event

- Selection of ball from a basket.
- Suppose a basket is having 10 balls
- Event A: Probability of selecting one ball is $1 / 10$

Dependant event B

- Now, keep the ball in other basket.
- Event B: Probability of selcting next ball is $1 / 9$

Complementary Event

- Event A
- Complementary event is exactly not happening in event A
- Complementary event is denoted by $\mathrm{P}\left(\mathrm{A}^{\prime}\right)$

Venn diagram

- Venn diagram graphically represents event and total sample space
- Event A : is rolling of a dice, output of the event might be 2 or 6 as a sample.

Event -B

- Event B : is rolling of a dice, output of the event might be $1,3,4,5$

Observations

- If we observe event A and event B, there is no overlapping of samples.
- If two or more events are not overlapping, then these are mutually exclusive event.
- Mutually exclusive event cant occur at the same time.

Event - C

Event $-C$ is getting probability of 2,4 or 6
While event - A is having chances of getting 2 or 6

After rolling a dice 6 is the outcome. 6 is the part of event A and part of event B
Hence we can say A and C are not mutually exclusive

Set Operations

- Union:
- Probability of occurrence of either event A or event B is $P(A \cup B)$
- $\{1,2,3,4,5,6\}$
- Intersection
- Probability of occurrence of both event simultaneously i.e. Event A and event B
- $P(A \cap B)$

Rules for more events

- Rule of addition (or condition)
- Rule of multiplication (and condition)
- Above both event will be used to work on multiple events.

Rule of Multiplication

- The probability that event A and B both occur = Probability that Event A occurs * Probability that event B occurs, given that A has occurred
- $P(A \cap B)=P(A) P(B \mid A)$
- E.g. Probability of getting head in both flipping two coins together.
- Event A is flipping both coins first time
- Event B is flipping both coins second time

Rule of multiplication(independent event)

- Example : Two rolls dice what is the probability of getting 6 in both? (independent event)
- $P(A)=1 / 6$
- $P(B)=1 / 6$
- $P(B \mid A)$ is also $1 / 6$ in case of independent event.
- $P(A \cap B)=1 / 6$ * $1 / 6=1 / 36$
- Hence, probability of getting 6 when two dice roll together is $1 / 36$

Rules of multiplication(dependent event)

- There are 10 balls in the basket, 5 green, 2 yellow, 2 orange, 1 red. If 2 random balls are selected what is the probability of getting both yellow balls?
- Getting yellow ball at first attempt $P(A)=2 / 10$
- Probability of getting yellow when first yellow ball is already selected $P(B \mid A)=1 / 9$
- $P(A \cap B)=2 / 10 * 1 / 9=1 / 45$
- Hence probability of getting both yellow balls is $1 / 45$

Rules of addition

- Probability that event A or event B occurs = Probability that event A occurs + Probability that event B occurs - Probability that both event A and B occur
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Thank you

