SHIVAJI UNIVERSITY, KOLHAPUR

"DISSEMINATION OF EDUCATION FOR KNOWLEDGE, SCIENCE AND CULTURE."

- Shikshanmaharshi Dr. BapujiSalunkhe.

KOLHAPUR

Department of Statistics 2018-2019

'A Statistical Analysis of Weight of

 Newborn Babies'Shri Swami Vivekanand Shikshan Sanstha's VIVEKANAND COLLEGE, KOLHAPUR

Department Of Statistics

Certificate

This is certify that,

Sr. No.	Name	Roll No.
1	Kitture Chetan Annappa	8692
2	Jadhav Abhishek Surendra	8689
3	Parabkar Roshan Ravaso	8699
4	Patil Aniket Dattatray	8700
5	Patil Pravinsinh Bandopant	8101

of B.Sc. III have carried out case study with the topic 'A Statistical Analysis of Weight of Newborn Babies' as prescribed by Shivaji University, Kolhapur for B. Sc. - III course in STATISTICS in academic year 2018-2019.

Date:

Place: Kolhapur
Case Study Guide: Mr. M. S. Barale

Project Guide

Mr. M. S. Barale

Head of Department

[^0]
ACKNOWLEDGMENT

Gratitude is the hardest emotion to express and often doesn't find adequate words to convey that entire one feels. It is our foremost duty to express our deep sense of gratitude and respect to the supervisor Prof. Mr. M. S. Barale for his uplifting tendency and inspiring us for making of this project work completely and successfully.

We are indebted to the library personnel for offering all the help in completing the project work. Last but not the least we are thankful to our colleagues and those helped us directly or indirectly throughout this project work.

- Jadhav Abhishek Surendra
- Kitture Chetan Annappa
- Parabkar Roshan Ravaso
- Patil Aniket Dattatray
- Patil Pravinsinh Bandopant

INDEX

Sr. No.	Content	Page number
1.	Introduction	5
2.	Data Collection	6
3.	Objectives of study	6
4.	Data Analysis	$7-15$
5.	Conclusion	16
6.	Scope and Limitations	16
7.	References	17

INTRODUCTION

The health of a newborn baby is directly proportional to the health and nutritional status of the mother. Yet, lack of awareness and understanding about the need to ensure basic minimum intake of key nutritional factors like iron and calcium often leads to mothers giving birth to Low Birth Weight (LBW) babies.

As a country fighting against the scourge of malnutrition, India is one of the highest proportions of babies born with low birth weight. In fact, with various estimates suggesting that around 7.5 million babies are born underweight each year in India. Newborn babies weighing less than 2,500 grams are considered low-birth-weight (LBW) babies. The incidence of babies born with low birth weight is highest in South Asia, specifically in India.

A nutritious diet is very essential for a pregnant woman as it is she who passes the food to the baby in the womb. The quantity and quality of the diet are hugely important for her and shouldn't be compromised with. Due to lack of awareness about the right diet plan, expecting mothers often stick to the poor and unhealthy diet. More often, the expecting women are diagnosed with anemia, a condition that develops because of inadequate or faulty dietary habits.

It is necessary to check effect of other factors which are not related to the diet pattern. As like area of the mother, since the lifestyle of the rural area and urban area may affect the birth weight of newborn babies. Factors like type of delivery, number of deliveries, Gender of baby may have any impact on weight of the baby.

So we are going to study about the birth weight of newborn babies in such a way that 'Is there any effect of type of delivery, no. of deliveries, gender of baby and area in which mother lives on the weight of babies. In the present study, we have not considered any diet pattern of mother. A primary goal is to check an impact of factors like; type of delivery, number of deliveries, gender of baby and area in which mother lives on the new born babies weight.

DATA COLLECTION

The data collected is secondary data from the hospitals namely 1) C.P.R. hospital, Kolhapur 2) Seva Rugnalaya, Bawda and 3) Aster Aadhaar, Kolhapur. The data corresponding to the variables Baby weight, Age of mother, Area of living, Number of delivery, Type of deliveries taken for 619 patients. We didn't consider the observations related to twins delivery in the data.

OBJECTIVES OF STUDY

- To check whether the proportion of male babies and female babies is same or not.
- To check whether there is an impact of gender on weight of babies.
- To check whether there is an impact of no. of deliveries on weight of babies.
- To check whether there is an impact of type of delivery on weight of babies.
- To check whether there is an impact of area on weight of babies.

DATA ANALYSIS

We know that the sex of the baby is determined by the chromosomes as ' x ' and ' y '. The two ' x ' chromosomes come together in DNA then child is female. If one ' x ' and one ' y ' chromosomes together in DNA then child is male. So, there is chance of occurrence of any pair so that possibility is 0.5 .Hence, we are going to check the proportion of number of male babies is equal to number of female babies for our sample.

The hypothesis for test is as follows;
$\mathrm{H}_{0}: \mathrm{P}=0.5$
I.e. the number of female babies is equal to number of male babies.

VS
$\mathrm{H}_{1}: \mathrm{P}>0.5$
I.e. the number of female babies is not equal to number of male babies.

Observation Table:

Gender	Number of babies
Female	290
Male	322
Grand Total	612

For testing the above stated hypothesis, we carried out the one sample proportion test
Sample proportion of males $(\mathrm{P})=0.5261$

Calculation:

Calculated value of test statistic is
$Z_{\text {cal }}=0.5229$
$\mathrm{Z}_{\text {tab }}=1.64$

Conclusion:

$\mathrm{Z}_{\mathrm{cal}}<\mathrm{Z}_{\text {tab }}$
I.e. Accept Ho i.e. number of female babies is equal to number male babies .

Graphical Representation of data:

Living Area	Number of Babies
Rural	537
Urban	75
Grand Total	612

From the above graph it is clear that the more observations are from the rural areas as that of urban area.

Type of Delivery	Number of Babies
Caesarean	
Normal	
Grand Total	

Bar Diagram of Caesarean/Normal

From the above bar chart it is clear that numbers of babies born normally are more than that of by caesarean delivery. But there is no more difference in the counts from this we can say that due to poor health of mother the caesarean deliveries are increasing.

- Effect of Gender on the Birth Weight:

We are interested to check whether there is an effect of gender on weight of babies.
The box plot between gender v/s birth weights is given as below,

Interpretation:

It is observed that the box plot pattern is different for male and female baby weights. The average weight of male babies is greater than that of female babies. The weight of male babies are distributed symmetrically (about $\mathrm{M}=2.8$), but the weight of female babies is not symmetrically distributed (about $\mathrm{M}=2.6$). For female babies, median is more shifted towards the lower weights so we can say that more no. of female babies have lower weights.

Gender	Average weight of babies	S.D of weight of babies
F	2.624758621	0.470958
M	2.796770186	0.491487

From the above table, the average weight of male babies is greater than average weight of female babies. The standard deviation for both baby weights is equal i.e. both the data have equal spread.

Here we are interested to test the hypothesis that, H_{0} : Average weight of male babies and female babies are equal.
v/s
H_{1} : Average weight of male babies is greater than that of female babies.
To test the above hypothesis we use the Mann-Whitney U test. The results using this test are as follows
$Z_{\text {cal }} 4.6047$
$\mathrm{Z}_{\mathrm{tab}}=1.64$
Here,
$\mathrm{Z}_{\text {cal }}>\mathrm{Z}_{\text {tab }}$
Then, Reject H_{o} at $\alpha \%$ level of significance.
Conclusion:
Average weight of male babies is greater than that of female babies.

- Effect of Number of Deliveries on the Birth Weight:

We have weights of babies corresponding to number of deliveries $=1,2,3$ and 4 . The box plot between Birth Weight v/s Number of deliveries shown in figure below

Interpretation:

It is observed that, box plot pattern is different for number of deliveries $=1,2,3$ and 4 . The mothers, who have given birth to second child has birth weight maximum and lowest birth weight is observed corresponding to the mothers who have given birth to the $4^{\text {th }}$ child.
Results by actual calculation:

Number of Deliveries	Average of baby weights	Standard deviation of baby weights
1	2.6675	0.4935
2	2.7774	0.4835
3	2.6785	0.5133
4	2.6	0.3066

Kruskall- Wallis test is performed to compare the average weights of the babies corresponding to the number of deliveries.

The null hypothesis to test is
H_{0} : Average birth weights of the babies corresponding to number of deliveries are equal.

Against

H_{1} : Average birth weights of the babies corresponding to number of deliveries are not equal.
This test is easily available on R-software. So the results using R-code are,
$\chi^{2}=6.4633$, degrees of freedom $=3, p$-value $=0.0911, \chi^{2}$ tab $=7.8147$
Conclusion: Here, $\chi^{2}<\chi^{2}$ tab then accept H_{0} i.e. average birth weights of the babies corresponding to number of deliveries are equal at 5% level of significance.

It is concluded that, the mothers who have given the birth to second child have maximum birth weights with the standard deviation 0.483 which is less than that for first and third child. The standard deviation for the mothers giving birth to fourth child is less than the all, because the sample size is small for fourth delivery.

Effect of Type of Delivery on Baby Weight:

We are interested to check whether there is an impact of type of delivery on baby weight. The box plot between type of delivery and Baby weight is as follows,

Interpretation:

The box plot pattern is different for caesarean as well as normal delivery. The box plot depicts that the average baby weight in caesarean is slightly less than that of in normal delivery.

Type of delivery	Average of baby weights	Standard deviation of baby weights
Caesarean	2.6899	0.5204
Normal	2.7382	0.4585
Grand Total	2.7153	0.4891

Interpretation:

The box plot pattern is different for average baby weight in Caesarean and normal delivery. The box plot depicts that the average baby weight in Caesarean is slightly less than that of in normal delivery. The data for normal delivery has less variation than that of caesarean delivery. For normal delivery, the baby weights are slightly distributed positively skewed. For Caesarean delivery, the baby weights are slightly distributed negatively skewed.

Here we are interested to test the hypothesis that,
H_{0} : Average weight of normal delivery babies and Caesarean delivery babies is equal.
H_{1} : Average weight of normal delivery babies is greater than that of Caesarean delivery babies.

To test the above hypothesis we use the Mann-Whitney U test. The results using this test are as follows
$\mathrm{Z}_{\text {cal }}-4.6049$
$\mathrm{Z}_{\mathrm{tab}}=1.64$
Here,
$\mathrm{Z}_{\mathrm{cal}}<\mathrm{Z}_{\text {tab }}$
Then, accept H_{0} at $\alpha \%$ level of significance.

Conclusion:

Average weight of normal delivery babies and Caesarean delivery babies is equal.

Effect of Area on Baby Weight

We are interested to check whether there is an impact of area on weight of babies. The box plot between area and baby weight is as follows,

Interpretation:

The box plot pattern is different for rural as well as urban area. The average baby weight for urban area is greater that of rural area. In rural area, the box plot shows that the data is slightly positively skewed whereas in urban area the box plot shows that it is highly negatively skewed i.e. the more number of babies has weight more than the median.

Area of living	Average of Baby Weights	Standard deviation of Baby Weights
Rural	2.7083	0.4904
Urban	2.7653	0.4797
Grand Total	2.7153	0.4891

The same result is shown by actual data values for both factor means.

CONCLUSION

As we have studied the data related to the weight of newborn babies. Here we get the following conclusion from data.

- As per biological study we know that the probability of new born baby to be male or female is equal and our study also shows the same result.
- Our study shows that the average weight of male babies is slightly greater than that of female babies.
- According to the data, the weight of new-born baby is more at the second delivery than that of other deliveries and the weight decreases when the number of delivery increases.
- Average weight of normal delivery babies and Caesarean delivery babies is equal.
- The average weight of babies is greater in urban area.

SCOPE AND LIMITATIONS

1. The data is collected from only three hospitals of Kolhapur city. The results may be vary if we take data from other hospitals.
2. If there is availability of mother's weight at the time of delivery then we can check whether there is any relation between baby weight and mother's weight by correlation analysis.

REFERENCES

'Fundamentals of Statistics' by S. C. Gupta(Page -
Guidance of Teachers
Statistical Methods - II by Dr. B. G. Kore and Prof. P. G. Dixit (Page-3.20)

R-CODE

R CODE FOR BOXPLOT AND KRUSKALL WALLIS TEST Number of Deliveries v/s Weight of Babies(Kruskall Wallis test)

$\mathrm{x}=\mathrm{read} . \operatorname{csv}$ ("C:/Users/shubham/Downloads/Data1.csv")
$\operatorname{attach}(\mathrm{x})$
head(x)
ind $=c($ which $($ Dtimes==5),which(Dtimes==6) $)$
$\mathrm{D}=\mathrm{x}[-\mathrm{ind}$,]
D
nrow(D)
boxplot($\mathrm{W} \sim$ Dtimes, data $=\mathrm{D}, \mathrm{xlab}=$ "Number of Deliveries", ylab="Weight of
Babies",main="Number of Deliveries v/s Weight of Babies")
kruskal.test $(\mathrm{W} \sim$ Dtimes, data $=\mathrm{D})$
png("NewPlot111.png", width $=4$, height $=4$, units $=$ 'in', res $=300$)
boxplot(W ~ Dtimes, data = D,xlab="Number of Deliveries",ylab="Weight of
Babies",main="Number of Deliveries v/s Weight of Babies")
)
dev.off()
kruskal.test $(\mathrm{W} \sim$ Dtimes, data $=\mathrm{D})$
OUTPUT
kruskal.test (W ~ Dtimes, data $=\mathrm{D}$)

Kruskal-Wallis rank sum test

data: W by Dtimes
Kruskal-Wallis chi-squared $=6.4633, \mathrm{df}=3, \mathrm{p}$-value $=0.09112$
"Type of Delivery v/s Weight of Babies"
x=read.csv("C:/Users/shubham/Downloads/Data1.csv")
$\operatorname{attach}(\mathrm{x})$
head(x)
ind=c(which(Dtimes==5),which(Dtimes==6))

D=x[-ind,]
D
boxplot(formula= W ~ Dtype, data =D, xlab="Type of Delivery",ylab="Weight of Babies",main="Type of Delivery v/s Weight of Babies")
png("NewPlot111.png", width $=4$, height $=4$, units $=$ 'in', res $=300$) boxplot(formula= W ~ Dtype,data =D,xlab="Type of Delivery",ylab="Weight of Babies",main="Type of Delivery v/s Weight of Babies")) dev.off()

Gender v/s Weight of Babies

x=read.csv("C:/Users/shubham/Downloads/Data1.csv")
$\operatorname{attach}(\mathrm{x})$
head(x)
ind=c(which(Dtimes==5), which(Dtimes==6))
D=x[-ind,]
D
boxplot(formula= W ~ Gender , data =D, xlab="Gender", ylab="Weight of Babies",main="Gender v/s Weight of Babies")
png("NewPlot111.png", width $=4$, height $=4$, units $=$ 'in', res $=300$)
boxplot(formula= W ~ Gender, data =D, xlab="Gender", ylab="Weight of
Babies",main="Gender v/s Weight of Babies")
dev.off()

Area v/s Weight of Babies

x=read.csv("C:/Users/shubham/Downloads/Data1.csv")
$\operatorname{attach}(\mathrm{x})$
head(x)
ind=c(which(Dtimes==5), which(Dtimes==6))
D=x[-ind,]
D
boxplot(formula= W ~ Area,data =D,xlab="Area",ylab="Weight of Babies",main="Area v/s Weight of Babies")
png("NewPlot111.png", width $=4$, height $=4$, units $=$ 'in', res $=300$)
boxplot(formula= W ~ Area,data =D,xlab="Area",ylab="Weight of Babies",main="Area v/s Weight of Babies")
dev.off()

DATA

Sr. No.	Hospital	Gender	Weight	Mothers age	Area	Dtimes	Dtype
1	CPR	Male	2.1	26	Urban	2	Normal
2	CPR	Male	2.1	20	Rural	1	Normal
3	CPR	Female	2.3	25	Rural	2	Normal
4	CPR	Female	2.6	22	Rural	1	Normal
5	CPR	Male	2.5	19	Rural	1	Normal
6	CPR	Female	2.6	25	Rural	3	Normal
7	CPR	Male	2	30	Rural	4	Normal
8	CPR	Female	0.8	19	Rural	1	Normal
9	CPR	Male	2.9	23	Rural	2	Normal
10	CPR	Male	2.6	26	Rural	2	Normal
11	CPR	Male	1.9	20	Rural	1	Normal
12	CPR	Female	2.5	20	Rural	1	Normal
13	CPR	Male	2.8	22	Rural	1	Normal
14	CPR	Male	3.4	24	Rural	2	Normal
15	CPR	Male	2.7	21	Rural	2	Normal
16	CPR	Male	2.8	24	Rural	2	Normal
17	CPR	Female	2.5	26	Rural	1	Normal
18	CPR	Female	3.1	26	Rural	2	Normal
19	CPR	Female	2.6	28	Rural	2	Normal
20	CPR	Male	2.6	27	Rural	3	Normal
21	CPR	Male	3.4	25	Rural	3	Normal
22	CPR	Male	2.7	19	Rural	1	Normal
23	CPR	Female	2.5	20	Rural	1	Normal
24	CPR	Male	3	22	Rural	1	Normal
25	CPR	Male	1.2	28	Rural	2	Normal
26	CPR	Male	2.9	22	Rural	2	Normal

27	CPR	Female	2.6	25	Rural	1	Normal
28	CPR	Female	2.7	22	Rural	1	Normal
29	CPR	Female	2.2	20	Rural	2	Normal
30	CPR	Female	2.5	26	Rural	2	Normal
31	CPR	Male	2.4	19	Rural	1	Normal
32	CPR	Male	2.1	22	Rural	1	Normal
33	CPR	Female	2.5	21	Rural	1	Normal
34	CPR	Female	2.9	21	Rural	1	Normal
35	CPR	Female	3	28	Rural	2	Normal
36	CPR	Female	2.9	23	Rural	3	Normal
37	CPR	Male	3	27	Rural	2	Normal
38	CPR	Male	2.9	22	Rural	2	Normal
39	CPR	Male	1.6	23	Rural	2	Normal
40	CPR	Male	2.3	22	Rural	1	Normal
41	CPR	Male	2	24	Rural	2	Normal
42	CPR	Male	2.8	20	Rural	1	Normal
43	CPR	Female	3	20	Rural	1	Normal
44	CPR	Female	2.3	21	Rural	1	Normal
45	CPR	Female	2.8	23	Rural	2	Normal
46	CPR	Male	3	26	Rural	2	Normal
47	CPR	Female	1.9	19	Rural	1	Normal
48	CPR	Female	2.6	26	Rural	1	Normal
49	CPR	Female	2.4	23	Rural	2	Normal
50	CPR	Female	2.1	28	Rural	3	Normal
51	CPR	Male	3	25	Rural	2	Normal
52	CPR	Female	2	21	Rural	1	Normal
53	CPR	Female	2.8	19	Rural	1	Normal
54	CPR	Female	2.9	36	Rural	3	Normal
55	CPR	Male	2.6	25	Rural	3	Normal
56	CPR	Male	3.2	28	Rural	3	Normal

57	CPR	Male	3.1	21	Rural	1	Normal
58	CPR	Male	2.5	29	Rural	2	Normal
59	CPR	Male	2.5	27	Rural	4	Normal
60	CPR	Female	2	20	Rural	1	Normal
61	CPR	Female	2.9	25	Rural	1	Normal
62	CPR	Female	1.6	22	Rural	1	Normal
63	CPR	Female	2.7	24	Rural	2	Normal
64	CPR	Female	2.8	20	Rural	1	Normal
65	CPR	Male	2.7	24	Rural	1	Normal
66	CPR	Female	2.3	19	Rural	2	Normal
67	CPR	Female	2.3	20	Rural	1	Normal
68	CPR	Female	3	24	Rural	1	Normal
69	CPR	Female	3.3	25	Rural	1	Normal
70	CPR	Female	2.2	20	Rural	1	Normal
71	CPR	Female	2.7	19	Rural	1	Normal
72	CPR	Female	2	30	Rural	3	Normal
73	CPR	Female	2.2	21	Rural	2	Normal
74	CPR	Male	3	22	Rural	1	Normal
75	CPR	Female	2.7	24	Rural	2	Normal
76	CPR	Male	2.5	23	Rural	2	Normal
77	CPR	Female	2.4	24	Rural	1	Normal
78	CPR	Male	2.7	22	Rural	1	Normal
79	CPR	Male	2.7	21	Rural	3	Normal
80	CPR	Male	3.4	32	Rural	2	Normal
81	CPR	Female	2.4	19	Rural	2	Normal
82	CPR	Female	2.8	23	Rural	2	Normal
83	CPR	Female	3	24	Rural	2	Normal
84	CPR	Female	2.5	25	Rural	1	Normal
85	CPR	Male	3	25	Rural	1	Normal
86	CPR	Male	2.6	21	Rural	3	Normal

87	CPR	Male	3.3	28	Rural	3	Normal
88	CPR	Female	3	25	Rural	3	Normal
89	CPR	Female	2.7	22	Rural	1	Normal
90	CPR	Male	2.5	25	Rural	3	Normal
91	CPR	Male	1.8	20	Rural	1	Normal
92	CPR	Male	2.7	20	Rural	1	Normal
93	CPR	Male	2.6	25	Rural	1	Normal
94	CPR	Female	2	24	Rural	3	Normal
95	CPR	Male	2.3	22	Rural	2	Normal
96	CPR	Male	2.5	22	Rural	1	Normal
97	CPR	Male	2.7	21	Rural	1	Normal
98	CPR	Male	3.5	25	Rural	3	Normal
99	CPR	Female	2.1	21	Rural	1	Normal
100	CPR	Male	2.6	27	Rural	5	Normal
101	CPR	Male	2.7	25	Rural	1	Normal
102	CPR	Female	2.2	27	Rural	2	Normal
103	CPR	Female	2.7	20	Rural	3	Normal
104	CPR	Male	2.1	26	Rural	1	Normal
105	CPR	Male	3.2	17	Rural	1	Normal
106	CPR	Female	2	30	Rural	1	Normal
107	CPR	Female	2.7	21	Rural	2	Normal
108	CPR	Female	2.4	26	Rural	1	Normal
109	CPR	Male	2.9	23	Rural	3	Normal
110	CPR	Male	2.4	19	Rural	1	Normal
111	CPR	Female	2.4	30	Rural	2	Normal
112	CPR	Male	2.9	22	Rural	1	Normal
113	CPR	Female	2.2	23	Rural	2	Normal
114	CPR	Male	3.2	30	Rural	2	Normal
115	Seva	Female	3	25	Rural	3	Normal
116	Seva	Female	2.7	26	Rural	2	Normal

117	Seva	Male	3.2	28	Rural	1	Normal
118	Seva	Female	3.1	26	Rural	3	Normal
119	Seva	Male	2.9	23	Urban	2	Caesarean
120	Seva	Female	2.7	21	Urban	1	Caesarean
121	Seva	Male	3	20	Rural	2	Normal
122	Seva	Female	2	38	Rural	2	Caesarean
123	Seva	Female	2.6	21	Rural	1	Normal
124	Seva	Male	2.6	22	Urban	1	Caesarean
125	Seva	Male	2.7	28	Rural	2	Caesarean
126	Seva	Male	2.6	25	Urban	4	Normal
127	Seva	Male	2.8	25	Rural	2	Caesarean
128	Seva	Female	2.9	27	Rural	2	Caesarean
129	Seva	Male	2.8	24	Rural	2	Caesarean
130	Seva	Female	2.6	20	Rural	1	Normal
131	Seva	Male	3.1	28	Rural	2	Caesarean
132	Seva	Male	2.9	25	Rural	2	Caesarean
133	Seva	Male	3	26	Rural	2	Normal
134	Seva	Male	3.2	25	Rural	1	Caesarean
135	Seva	Male	3.2	25	Urban	2	Caesarean
136	Seva	Female	3.5	26	Rural	2	Normal
137	Seva	Female	2.8	27	Rural	2	Normal
138	Seva	Female	2.4	24	Rural	2	Caesarean
139	Seva	Female	3.5	20	Urban	1	Normal
140	Seva	Female	2.9	28	Urban	1	Caesarean
141	Seva	Male	3.2	25	Rural	1	Caesarean
142	Seva	Female	2.7	23	Rural	2	Normal
143	Seva	Male	3	25	Urban	2	Normal
144	Seva	Male	3.2	26	Rural	2	Normal
145	Seva	Male	3	23	Rural	2	Normal
146	Seva	Male	3	22	Urban	1	Normal

147	Seva	Female	2.9	21	Urban	2	Normal
148	Seva	Male	3	22	Urban	1	Normal
149	Seva	Female	2.6	21	Urban	1	Normal
150	Seva	Male	2.6	25	Rural	2	Caesarean
151	Seva	Female	2.9	22	Rural	2	Normal
152	Seva	Female	2.3	20	Rural	1	Normal
153	Seva	Male	2.3	21	Rural	2	Normal
154	Seva	Male	3	20	Rural	1	Normal
155	Seva	Male	2.9	28	Rural	2	Normal
156	Seva	Male	2.5	20	Rural	2	Normal
157	Seva	Female	3.4	20	Rural	1	Normal
158	Seva	Female	2.6	25	Urban	1	Normal
159	Seva	Male	3.6	18	Rural	2	Normal
160	Seva	Female	3	22	Urban	2	Caesarean
161	Seva	Male	3.3	30	Rural	1	Caesarean
162	Seva	Male	2.6	30	Rural	1	Caesarean
163	Seva	Female	3.1	29	Rural	2	Normal
164	Seva	Female	3	23	Rural	2	Normal
165	Seva	Female	1.8	25	Rural	2	Normal
166	Seva	Female	2.8	29	Rural	2	Normal
167	Seva	Male	3	27	Rural	2	Caesarean
168	Seva	Female	2.9	24	Rural	3	Normal
169	Seva	Male	3	22	Rural	1	Normal
170	Seva	Female	2.6	28	Rural	1	Caesarean
171	Seva	Male	2.4	24	Rural	2	Normal
172	Seva	Male	2.9	24	Rural	2	Normal
173	Seva	Male	3.2	25	Rural	2	Caesarean
174	Seva	Male	2.7	22	Urban	2	Caesarean
175	Seva	Female	3.2	22	Urban	2	Normal
176	Seva	Male	3.1	25	Rural	2	Normal

177	Seva	Male	3.5	27	Rural	2	Normal
178	Seva	Male	3	23	Rural	1	Caesarean
179	Seva	Female	3.3	23	Rural	1	Normal
180	Seva	Female	2.75	28	Rural	1	Caesarean
181	Seva	Female	2.3	19	Urban	2	Normal
182	Seva	Female	3.2	25	Urban	3	Normal
183	Seva	Male	3.1	26	Rural	2	Normal
184	Seva	Male	3.2	27	Rural	2	Normal
185	Seva	Female	2.4	22	Urban	3	Caesarean
186	Seva	Male	3.8	29	Urban	2	Normal
187	Seva	Female	2.5	22	Rural	2	Normal
188	Seva	Female	3	23	Rural	2	Caesarean
189	Seva	Female	3	24	Rural	2	Caesarean
190	Seva	Female	3.7	23	Rural	2	Normal
191	Seva	Male	3.2	24	Rural	1	Normal
192	Seva	Male	2.7	26	Rural	1	Normal
193	Seva	Female	2.4	24	Rural	2	Caesarean
194	Seva	Male	3	25	Urban	2	Normal
195	Seva	Male	3.5	22	Urban	2	Caesarean
196	Seva	Male	3.2	22	Rural	1	Normal
197	Seva	Male	2.8	25	Rural	2	Normal
198	Seva	Male	3.1	21	Urban	1	Normal
199	Seva	Male	3.6	23	Rural	2	Normal
200	Seva	Male	2.1	25	Rural	3	Normal
201	Seva	Male	3.6	21	Rural	2	Normal
202	Seva	Male	3.9	23	Urban	2	Normal
203	Seva	Female	2.3	30	Rural	2	Normal
204	Seva	Female	2.6	25	Rural	2	Caesarean
205	Seva	Male	3	25	Urban	2	Normal
206	Seva	Male	3.6	26	Rural	2	Normal

207	Seva	Male	3.8	26	Rural	3	Normal
208	Seva	Female	2.4	19	Rural	2	Normal
209	Seva	Male	2.9	26	Rural	4	Normal
210	Seva	Male	3.6	29	Rural	2	Caesarean
211	Seva	Female	3	29	Urban	2	Normal
212	Seva	Male	2.5	26	Rural	2	Normal
213	Seva	Female	2.5	26	Rural	2	Caesarean
214	Seva	Female	3.1	25	Rural	3	Normal
215	Seva	Male	2.9	25	Rural	1	Caesarean
216	Seva	Male	3.2	21	Urban	1	Normal
217	Seva	Female	2	21	Rural	1	Normal
218	Seva	Female	3.1	29	Urban	2	Caesarean
219	Seva	Female	2.3	21	Rural	1	Normal
220	Seva	Female	3.2	21	Rural	1	Normal
221	Seva	Female	2.5	22	Rural	1	Normal
222	Seva	Male	3.2	33	Rural	3	Normal
223	Seva	Male	3.4	22	Rural	2	Caesarean
224	Seva	Female	2.8	19	Rural	1	Normal
225	Seva	Male	3.8	25	Rural	1	Caesarean
226	Seva	Female	2.5	21	Rural	1	Normal
227	Seva	Male	3	25	Rural	2	Normal
228	Seva	Female	2.6	25	Urban	1	Caesarean
229	Seva	Female	2.8	24	Rural	1	Normal
230	Seva	Female	3	23	Rural	1	Caesarean
231	Seva	Male	2.6	23	Rural	2	Caesarean
232	Seva	Female	3	21	Rural	1	Caesarean
233	Seva	Male	2.7	21	Rural	1	Caesarean
234	Seva	Female	3	24	Rural	1	Caesarean
235	Seva	Female	3.1	21	Rural	1	Caesarean
236	Seva	Female	3.6	25	Rural	2	Normal

237	Seva	Male	3.3	23	Rural	2	Normal
238	Seva	Male	2.8	22	Rural	1	Caesarean
239	Seva	Male	3.2	25	Rural	1	Normal
240	Seva	Male	2.9	28	Rural	3	Normal
241	Seva	Male	3.2	22	Urban	2	Caesarean
242	Seva	Male	3	24	Rural	2	Normal
243	Seva	Male	2.8	26	Rural	4	Normal
244	Seva	Female	3.2	28	Rural	2	Normal
245	Seva	Female	3.3	27	Rural	2	Normal
246	Seva	Female	2.5	22	Rural	2	Normal
247	Seva	Female	2.1	20	Rural	1	Normal
248	Seva	Male	2.8	23	Rural	2	Caesarean
249	Seva	Female	2.2	25	Rural	2	Normal
250	Seva	Female	3.2	21	Rural	1	Normal
251	Seva	Female	3	27	Urban	4	Normal
252	Seva	Male	2.5	20	Urban	1	Normal
253	Seva	Male	2.7	23	Urban	2	Normal
254	Seva	Male	2.3	20	Rural	1	Caesarean
255	Seva	Male	2.6	25	Rural	2	Normal
256	Seva	Male	3.4	26	Urban	3	Normal
257	Seva	Male	2.5	20	Rural	1	Normal
258	Seva	Female	2.4	26	Urban	2	Normal
259	Seva	Male	2.8	31	Urban	2	Caesarean
260	Seva	Female	3.4	27	Rural	3	Normal
261	Seva	Female	2.5	21	Rural	1	Caesarean
262	Seva	Female	3	24	Rural	3	Normal
263	Seva	Male	3.2	25	Rural	3	Normal
264	Seva	Female	3	19	Urban	1	Caesarean
265	Seva	Female	2.5	27	Urban	2	Normal
266	Seva	Male	2.9	21	Rural	1	Normal

267	Seva	Female	2.5	23	Rural	2	Normal
268	Seva	Female	2.5	29	Rural	2	Caesarean
269	Seva	Female	3.2	23	Rural	2	Normal
270	Seva	Male	2.6	23	Urban	1	Normal
271	Seva	Male	3.4	25	Urban	2	Normal
272	Seva	Male	2.5	20	Urban	1	Caesarean
273	Seva	Female	3	24	Urban	1	Normal
274	Seva	Female	3.7	24	Rural	2	Normal
275	Seva	Female	3	25	Rural	2	Normal
276	Seva	Male	3	28	Rural	2	Normal
277	Seva	Male	3.6	25	Rural	2	Normal
278	Seva	Male	2.6	27	Rural	1	Normal
279	Seva	Male	2.2	29	Rural	2	Caesarean
280	Seva	Male	2.3	25	Rural	1	Normal
281	Seva	Female	3.2	20	Rural	1	Normal
282	Seva	Female	2.9	21	Rural	2	Normal
283	Seva	Male	3.3	30	Rural	1	Caesarean
284	Seva	Male	3.2	21	Rural	2	Normal
285	Seva	Female	3	25	Urban	2	Normal
286	Seva	Female	3	22	Rural	2	Caesarean
287	Seva	Female	2.7	30	Urban	3	Normal
288	Seva	Male	3.1	25	Rural	2	Normal
289	Seva	Female	2.9	23	Urban	2	Normal
290	Seva	Male	2.6	20	Rural	2	Normal
291	Seva	Female	2.9	21	Rural	1	Normal
292	Seva	Male	2.4	23	Rural	2	Normal
293	Seva	Female	2.5	19	Rural	1	Normal
294	Seva	Female	2.4	21	Rural	2	Normal
295	Seva	Male	3	20	Rural	1	Caesarean
296	Seva	Male	3	27	Rural	2	Normal

297	CPR	Male	3.5	21	Rural	2	Caesarean
298	CPR	Female	2.5	20	Rural	1	Caesarean
299	CPR	Male	2	22	Rural	1	Caesarean
300	CPR	Male	1.5	25	Rural	2	Caesarean
301	CPR	Male	3	25	Rural	2	Caesarean
302	CPR	Male	3	28	Rural	2	Caesarean
303	CPR	Female	2.8	23	Rural	3	Caesarean
304	CPR	Female	2.7	25	Rural	2	Caesarean
305	CPR	Female	2	27	Rural	2	Caesarean
306	CPR	Female	2.5	28	Rural	2	Caesarean
307	CPR	Male	2.8	28	Urban	2	Caesarean
308	CPR	Male	1.5	23	Rural	2	Caesarean
309	CPR	Male	3.2	30	Rural	1	Caesarean
310	CPR	Female	3.1	23	Rural	1	Caesarean
311	CPR	Female	2.7	19	Rural	2	Caesarean
312	CPR	Male	2.5	22	Rural	1	Caesarean
313	CPR	Female	2.8	25	Rural	1	Caesarean
314	CPR	Female	3	25	Rural	2	Caesarean
315	CPR	Female	3	26	Rural	3	Caesarean
316	CPR	Male	3.4	23	Rural	1	Caesarean
317	CPR	Male	3.4	19	Rural	2	Caesarean
318	CPR	Male	2.5	21	Rural	1	Caesarean
319	CPR	Female	2.2	25	Rural	1	Caesarean
320	CPR	Female	2	30	Rural	3	Caesarean
321	CPR	Male	2.3	25	Rural	1	Caesarean
322	CPR	Female	3.3	25	Rural	3	Caesarean
323	CPR	Female	1	30	Rural	3	Caesarean
324	CPR	Male	2.5	21	Rural	2	Caesarean
325	CPR	Male	3	30	Rural	3	Caesarean
326	CPR	Male	2.5	30	Rural	2	Caesarean

327	CPR	Male	3.5	20	Rural	2	Caesarean
328	CPR	Female	2.5	23	Rural	1	Caesarean
329	CPR	Female	2	24	Rural	1	Caesarean
330	CPR	Female	2.5	27	Rural	3	Caesarean
331	CPR	Male	2.5	28	Rural	1	Caesarean
332	CPR	Male	2.7	25	Rural	2	Caesarean
333	CPR	Male	2.3	22	Rural	1	Caesarean
334	CPR	Male	3.4	22	Rural	3	Caesarean
335	CPR	Female	3	25	Rural	1	Caesarean
336	CPR	Female	2.1	28	Rural	3	Caesarean
337	CPR	Female	2.7	22	Rural	1	Caesarean
338	CPR	Male	2.3	29	Rural	2	Caesarean
339	CPR	Female	2.2	22	Rural	3	Caesarean
340	CPR	Male	2.6	24	Rural	1	Caesarean
341	CPR	Female	3.5	22	Rural	2	Caesarean
342	CPR	Male	2.6	22	Rural	1	Caesarean
343	CPR	Male	3.5	25	Rural	1	Caesarean
344	CPR	Female	2.2	20	Rural	1	Caesarean
345	CPR	Male	3	24	Urban	2	Caesarean
346	CPR	Male	3.3	27	Rural	1	Caesarean
347	CPR	Female	1.5	20	Rural	1	Caesarean
348	CPR	Male	2.7	27	Rural	3	Caesarean
349	CPR	Female	2.4	32	Rural	1	Caesarean
350	CPR	Male	4.3	22	Rural	2	Caesarean
351	CPR	Male	3.1	26	Rural	1	Caesarean
352	CPR	Male	2.8	30	Rural	2	Caesarean
353	CPR	Female	3.1	30	Rural	3	Caesarean
354	CPR	Male	3	21	Rural	2	Caesarean
355	CPR	Female	2.8	26	Rural	2	Caesarean
356	CPR	Male	3	27	Rural	2	Caesarean

357	CPR	Male	3.1	25	Rural	2	Caesarean
358	CPR	Female	2.4	25	Rural	3	Caesarean
359	CPR	Male	2.5	24	Rural	1	Caesarean
360	CPR	Female	2.5	25	Urban	1	Caesarean
361	CPR	Male	2.7	20	Rural	1	Caesarean
362	CPR	Male	2.8	25	Rural	2	Caesarean
363	CPR	Female	2.9	20	Rural	1	Caesarean
364	CPR	Male	3	28	Rural	1	Caesarean
365	CPR	Male	2.5	23	Rural	3	Caesarean
366	CPR	Male	2	27	Rural	1	Caesarean
367	CPR	Female	2.5	28	Rural	2	Caesarean
368	CPR	Female	3.1	21	Rural	2	Caesarean
369	CPR	Male	2.6	36	Rural	3	Caesarean
370	CPR	Male	3.5	28	Rural	1	Caesarean
371	CPR	Male	2.3	22	Urban	2	Caesarean
372	CPR	Female	2.5	26	Rural	5	Caesarean
373	CPR	Female	1.3	35	Urban	2	Caesarean
374	CPR	Male	2.7	24	Rural	2	Caesarean
375	CPR	Male	3.2	27	Rural	2	Caesarean
376	CPR	Female	2.5	25	Rural	1	Caesarean
377	CPR	Male	2.5	26	Rural	2	Caesarean
378	CPR	Male	2	24	Rural	2	Caesarean
379	CPR	Female	2.5	30	Rural	2	Caesarean
380	CPR	Female	2.7	23	Rural	2	Caesarean
381	CPR	Female	2.2	38	Rural	1	Caesarean
382	CPR	Female	2.4	21	Rural	1	Caesarean
383	CPR	Female	3.1	23	Rural	2	Caesarean
384	CPR	Female	2.9	28	Rural	3	Caesarean
385	CPR	Female	2.3	24	Rural	1	Caesarean
386	CPR	Male	3	23	Rural	2	Caesarean

387	CPR	Male	2.5	23	Rural	1	Caesarean
388	CPR	Male	3	23	Rural	2	Caesarean
389	CPR	Female	1.8	32	Rural	2	Caesarean
390	CPR	Female	1.2	25	Rural	3	Caesarean
391	CPR	Female	2.6	23	Rural	2	Caesarean
392	CPR	Male	2.8	19	Rural	1	Caesarean
393	CPR	Male	2.6	20	Rural	2	Caesarean
394	CPR	Female	2.9	25	Rural	2	Caesarean
395	CPR	Male	2.6	23	Rural	1	Caesarean
396	CPR	Male	2.9	22	Urban	1	Caesarean
397	CPR	Male	2.4	33	Rural	1	Caesarean
398	CPR	Male	3	24	Rural	1	Caesarean
399	CPR	Female	2.6	24	Rural	1	Caesarean
400	CPR	Female	2.7	23	Rural	1	Caesarean
401	CPR	Female	2.3	33	Rural	3	Caesarean
402	CPR	Male	3.6	24	Urban	3	Caesarean
403	CPR	Male	2.5	25	Rural	1	Caesarean
404	CPR	Female	2.5	21	Urban	1	Caesarean
405	CPR	Female	2.5	22	Rural	3	Caesarean
406	CPR	Male	3	26	Urban	2	Caesarean
407	CPR	Female	3	23	Rural	2	Caesarean
408	CPR	Male	2.8	23	Rural	1	Caesarean
409	CPR	Male	2.1	32	Urban	2	Caesarean
410	CPR	Female	2.5	32	Rural	3	Caesarean
411	CPR	Male	3	28	Rural	1	Caesarean
412	CPR	Female	3.5	25	Rural	1	Caesarean
413	CPR	Female	2.5	26	Rural	1	Caesarean
414	CPR	Male	2.5	29	Rural	1	Caesarean
415	CPR	Female	1.5	42	Rural	2	Caesarean
416	CPR	Male	2.8	20	Rural	2	Caesarean

417	CPR	Female	3.1	24	Urban	2	Caesarean
418	CPR	Female	2.6	24	Urban	3	Caesarean
419	CPR	Male	3.3	23	Rural	2	Caesarean
420	CPR	Male	2.4	30	Rural	2	Caesarean
421	CPR	Male	3.5	23	Rural	1	Caesarean
422	CPR	Female	2.9	27	Urban	3	Caesarean
423	CPR	Male	2.5	23	Rural	1	Caesarean
424	CPR	Female	3.1	31	Rural	2	Caesarean
425	CPR	Male	2.7	27	Rural	2	Caesarean
426	CPR	Female	2.7	22	Rural	2	Caesarean
427	CPR	Male	2.6	23	Rural	2	Caesarean
428	CPR	Female	2	24	Urban	2	Caesarean
429	CPR	Female	3	23	Rural	3	Caesarean
430	CPR	Male	2.9	23	Rural	2	Caesarean
431	CPR	Female	3.6	21	Rural	1	Caesarean
432	CPR	Female	2.4	21	Rural	1	Caesarean
433	CPR	Male	2.7	35	Rural	1	Caesarean
434	CPR	Female	3	31	Rural	2	Caesarean
435	CPR	Female	2.5	31	Rural	2	Caesarean
436	CPR	Male	4.2	23	Rural	2	Caesarean
437	CPR	Female	2.7	22	Rural	2	Caesarean
438	CPR	Male	3	26	Rural	2	Caesarean
439	CPR	Female	1.9	20	Rural	1	Caesarean
440	CPR	Female	2.7	32	Rural	1	Caesarean
441	CPR	Female	2.1	20	Urban	1	Caesarean
442	CPR	Male	2.7	24	Rural	2	Caesarean
443	CPR	Female	3	22	Rural	1	Caesarean
444	CPR	Male	3.2	26	Rural	2	Caesarean
445	CPR	Male	2	27	Rural	3	Caesarean
446	CPR	Male	3	19	Rural	1	Caesarean

447	CPR	Female	3	30	Rural	3	Caesarean
448	CPR	Male	3	27	Rural	3	Caesarean
449	CPR	Male	2.5	32	Rural	5	Caesarean
450	CPR	Male	2.3	19	Rural	1	Caesarean
451	CPR	Male	2.5	21	Rural	2	Caesarean
452	CPR	Female	1.7	19	Rural	1	Caesarean
453	CPR	Male	2.5	23	Rural	2	Caesarean
454	CPR	Female	2.5	24	Rural	1	Caesarean
455	CPR	Female	2.8	21	Rural	1	Caesarean
456	CPR	Female	2.2	29	Rural	2	Caesarean
457	CPR	Male	3.3	23	Rural	1	Caesarean
458	CPR	Male	2.8	25	Rural	1	Caesarean
459	CPR	Male	1.7	23	Urban	3	Caesarean
460	CPR	Male	3.5	28	Rural	2	Caesarean
461	CPR	Male	2.5	23	Rural	4	Caesarean
462	CPR	Female	2.2	30	Rural	2	Caesarean
463	CPR	Male	1.5	28	Rural	1	Caesarean
464	CPR	Male	3.5	21	Rural	1	Caesarean
465	CPR	Female	2	22	Rural	2	Caesarean
466	CPR	Female	3.5	25	Rural	1	Caesarean
467	CPR	Male	2.9	33	Rural	5	Caesarean
468	CPR	Female	2.25	29	Rural	3	Caesarean
469	CPR	Female	2	26	Urban	2	Caesarean
470	CPR	Female	2.3	32	Rural	6	Caesarean
471	CPR	Female	2.5	22	Rural	2	Caesarean
472	CPR	Female	2.5	23	Rural	2	Caesarean
473	CPR	Male	3.5	21	Rural	2	Caesarean
474	CPR	Male	2.5	25	Rural	2	Caesarean
475	CPR	Female	3.2	25	Rural	1	Caesarean
476	CPR	Female	2.5	30	Rural	3	Caesarean

477	CPR	Male	2.3	21	Rural	2	Caesarean
478	CPR	Male	3	35	Rural	2	Caesarean
479	CPR	Male	1.2	31	Rural	1	Caesarean
480	CPR	Female	2.8	21	Rural	1	Caesarean
481	CPR	Female	2.2	29	Rural	2	Caesarean
482	CPR	Male	3.3	23	Rural	1	Caesarean
483	CPR	Male	2.8	25	Rural	1	Caesarean
484	CPR	Male	1.7	23	Urban	3	Caesarean
485	CPR	Male	3.5	28	Rural	2	Caesarean
486	CPR	Male	2.5	23	Rural	4	Caesarean
487	CPR	Female	2.2	30	Rural	2	Caesarean
488	CPR	Male	1.52	28	Rural	1	Caesarean
489	CPR	Male	3.5	21	Rural	1	Caesarean
490	CPR	Female	2	22	Rural	2	Caesarean
491	CPR	Female	3.5	25	Rural	1	Caesarean
492	CPR	Male	2.9	33	Rural	5	Caesarean
493	CPR	Female	2.25	29	Rural	3	Caesarean
494	CPR	Female	2	26	Urban	2	Caesarean
495	AA	Female	2.3	32	Rural	6	Caesarean
496	AA	Female	2.5	22	Rural	2	Caesarean
497	AA	Female	2.5	23	Rural	2	Caesarean
498	AA	Male	3.5	21	Rural	2	Caesarean
499	AA	Male	2.5	25	Rural	2	Caesarean
500	AA	Female	3.2	25	Rural	1	Caesarean
501	AA	Female	2.5	30	Rural	3	Caesarean
502	AA	Male	2.3	21	Rural	2	Caesarean
503	AA	Male	3	35	Rural	2	Caesarean
504	AA	Male	1.2	31	Rural	1	Caesarean
505	AA	Male	2.3	23	Urban	1	Caesarean
506	AA	Female	2.5	40	Rural	1	Caesarean

507	AA	Male	2.7	27	Rural	3	Caesarean
508	AA	Male	3	23	Rural	2	Caesarean
509	AA	Male	2.5	21	Rural	2	Caesarean
510	AA	Female	2.7	28	Rural	2	Caesarean
511	AA	Female	2.5	22	Rural	1	Caesarean
512	AA	Female	2.5	22	Rural	1	Caesarean
513	AA	Male	3.5	24	Rural	1	Caesarean
514	AA	Male	3.5	20	Rural	1	Caesarean
515	AA	Female	3	21	Rural	1	Caesarean
516	AA	Male	3.1	22	Rural	1	Caesarean
517	AA	Male	1.5	19	Rural	1	Caesarean
518	AA	Female	2.8	24	Rural	1	Caesarean
519	AA	Female	2.2	25	Rural	1	Caesarean
520	AA	Male	3.5	21	Rural	2	Caesarean
521	AA	Female	1.7	27	Rural	1	Caesarean
522	AA	Male	2.3	21	Rural	1	Caesarean
523	AA	Male	2.7	26	Rural	2	Caesarean
524	AA	Male	2.8	22	Rural	2	Caesarean
525	AA	Male	3.5	22	Rural	1	Caesarean
526	AA	Male	2.7	23	Rural	1	Caesarean
527	AA	Female	1.5	26	Rural	1	Caesarean
528	AA	Female	2.7	23	Rural	2	Caesarean
529	AA	Female	3.2	21	Rural	2	Caesarean
530	AA	Female	2.7	25	Rural	3	Caesarean
531	AA	Male	2.8	22	Rural	1	Normal
532	AA	Male	3.1	21	Rural	1	Normal
533	AA	Male	2.9	25	Rural	2	Normal
534	AA	Female	2.8	21	Rural	2	Normal
535	AA	Male	2.5	19	Rural	1	Normal
536	AA	Male	3.1	22	Rural	2	Normal

537	AA	Female	2.3	19	Rural	1	Normal
538	AA	Female	2.1	24	Rural	2	Normal
539	AA	Female	2.1	22	Rural	1	Normal
540	AA	Male	2.1	34	Rural	2	Normal
541	AA	Male	2.9	21	Rural	2	Normal
542	AA	Female	3.5	23	Rural	2	Normal
543	AA	Male	3.2	30	Rural	2	Normal
544	AA	Male	2.4	25	Rural	2	Normal
545	AA	Male	3.5	23	Rural	2	Normal
546	AA	Female	2.2	35	Rural	1	Normal
547	AA	Female	2.8	20	Rural	1	Normal
548	AA	Female	2.7	25	Rural	2	Normal
549	AA	Female	2.5	26	Rural	2	Normal
550	AA	Female	3	26	Rural	2	Normal
551	AA	Male	3	25	Rural	2	Normal
552	AA	Male	2.5	27	Rural	2	Normal
553	AA	Male	2.5	32	Rural	4	Normal
554	AA	Female	4	22	Rural	2	Normal
555	AA	Male	3	29	Rural	3	Normal
556	AA	Male	2.4	30	Rural	2	Normal
557	AA	Female	2.5	27	Rural	2	Normal
558	AA	Female	2.2	23	Rural	2	Normal
559	AA	Male	2.8	19	Rural	2	Normal
560	AA	Female	2.6	23	Rural	3	Normal
561	AA	Male	2.3	28	Rural	3	Normal
562	AA	Male	2.3	24	Rural	3	Normal
563	AA	Male	2.5	30	Rural	3	Normal
564	AA	Female	3.5	23	Rural	1	Normal
565	AA	Female	2.4	27	Rural	3	Normal
566	AA	Male	2.9	22	Rural	2	Normal

567	AA	Female	3.6	25	Rural	1	Normal
568	AA	Male	2.6	24	Rural	2	Normal
569	AA	Male	2.6	21	Urban	2	Normal
570	AA	Male	2.9	19	Urban	1	Normal
571	AA	Male	2.8	20	Rural	2	Normal
572	AA	Male	2.3	36	Rural	4	Normal
573	AA	Female	1.9	21	Rural	1	Normal
574	AA	Female	3	21	Rural	1	Normal
575	AA	Female	2	26	Rural	2	Normal
576	AA	Male	3	19	Rural	1	Normal
577	AA	Female	2.5	35	Rural	1	Normal
578	AA	Male	2.8	21	Rural	2	Normal
579	AA	Male	3.3	19	Rural	1	Normal
580	AA	Male	3.3	23	Rural	2	Normal
581	AA	Male	3.14	36	Rural	2	Normal
582	AA	Male	2.9	20	Rural	1	Normal
583	AA	Male	2.3	26	Rural	1	Normal
584	AA	Female	2.63	20	Rural	2	Normal
585	AA	Male	2.4	24	Urban	2	Normal
586	AA	Male	1.9	20	Rural	1	Normal
587	AA	Male	2.3	23	Rural	1	Normal
588	AA	Male	2.9	24	Rural	1	Normal
589	AA	Female	2	22	Rural	1	Normal
590	AA	Male	2.4	24	Rural	2	Normal
591	AA	Female	3.1	23	Rural	1	Normal
592	AA	Male	2.6	27	Rural	3	Normal
593	AA	Female	2.9	22	Rural	1	Normal
594	AA	Male	1.9	29	Rural	1	Normal
595	AA	Female	2.6	24	Rural	1	Normal
596	AA	Female	2.8	26	Rural	2	Normal

597	AA	Male	3	35	Rural	4	Normal
598	AA	Female	2.6	28	Rural	3	Normal
599	AA	Male	2.4	19	Rural	1	Normal
600	AA	Female	2.5	24	Rural	2	Normal
601	AA	Female	3.2	26	Rural	1	Normal
602	AA	Female	3	28	Urban	3	Normal
603	AA	Female	2	25	Urban	2	Normal
604	AA	Male	2	28	Rural	3	Normal
605	AA	Male	3	26	Urban	3	Normal
606	AA	Male	2.2	29	Rural	1	Normal
607	AA	Female	3	35	Urban	1	Normal
608	AA	Male	3	24	Urban	2	Normal
609	AA	Male	2.9	23	Urban	1	Normal
610	AA	Female	3	23	Rural	1	Normal
611	AA	Female	2.6	24	Rural	2	Normal
612	AA	Female	2.7	22	Rural	2	Normal

[^0]: Vaourer
 Prof. V. V. Pawar
 Ho as
 Department of Statistics
 Vivekanand College Kolharu

