

"Education for Knowledge, Science and Culture"

-Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's
 VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR.
 Department of Statistics

Final syllabus of B. Sc. I

Semester I and II, CBCS
(Implemented from academic year 2021-22 onwards)

VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR.

Department of Statistics

B.Sc.I Sem I \& II

Semester	Part	Course Code	Course Title	No. of Credits
I	I	DSC - 1004 A	Descriptive Statistics - I	02
	II	DSC - 1004 A	Elementary Probability Theory	02
II	I	DSC - 1004 B	Descriptive Statistics II	02
	II	DSC - 1004 B	Discrete Probability Distributions	02

"Education for Knowledge, Science and Culture"

-Shikshanmaharshi Dr. Bapuji Salunkhe
Shri Swami Vivekanand Shikshan Sanstha's
VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR.
B. Sc. Part - I CBCS Syllabus with effect from June, 2021 STATISTICS - DSC-1004 A

Semester: I Part- I
Descriptive Statistics -I
Theory: $\mathbf{3 6}$ Hours Credits - 2
Course Outcomes - At the end of this course students will be able to:
CO1. Know scope of Statistics and sampling methods.
CO 2 . Compute descriptive statistics.
CO3. Compute moments, skewness, kurtosis and its interpretation.
CO4. Analyze data pertaining to attributes and interpret the results.

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { 1.9 :Partition values Quartiles, Deciles and Percentiles,Box Plot. } \\ \text { 1.10: Comparison between averages in accordance with requirements } \\ \text { of good average. }\end{array} & \\ & \text { 1.11: Situations where one kind of average is preferable to others. }\end{array}\right]$

References:

1. Bhat B. R., Srivenkatramana T. and Madhava Rao K. S. (1996): Statistics: ABeginner's Text, Vol. 1, New Age International (P) Ltd.
2. Croxton F. E., Cowden D.J. and Kelin S. (1973): Applied General Statistics,Prentice Hall of India.
3. Goon A.M., Gupta M.K., and Dasgupta B.: Fundamentals of Statistics Vol. Iand II, World Press, Calcutta.
4. Gupta S. P. (2002): Statistical Methods, Sultan Chand and Sons, New Delhi.
5. Snedecor G.W. and Cochran W. G. (1967): Statistical Methods, Lowa StateUniversity Press.
6. Waiker and Lev.: Elementary Statistical Methods.
7. Gupta V.K. \& Kapoor S.C. Fundamentals of Mathematical Statistics.- Sultan\& Chand STATISTICS - DSC - 1004 A

Semester: I Part- II

Elementary Probability Theory

Theory: 36 Hours Credits - 2

Course Outcomes - At the end of this course students will be able to:
CO1. Distinguish between Deterministic and Non-deterministic experiments.
CO 2 . Understand the basic concepts of probabilities and learn theorems on probabilities.
CO3. Understand concepts of conditional probabilities and independence of events.
CO4. Understand the concept of discrete random variable, probability distributions and mathematical expectations.

Unit	Contents	Hours Allotted
$\mathbf{1}$	Sample space and Events: 1.1: Concepts of experiments and random experiments. 1.2: Definitions: Sample space, Discrete sample space (finite and countably infinite), Event, Types of events: Elementary event, Compound event, Impossible events, Certain event, favorable event	$\mathbf{0 8}$
	1.3: Algebra of events (Union, Intersection, Complementation). 1.4: Definitions of Mutually exclusive events, Exhaustive events, 1.5: Power set \mid P(Ω) (sample space consisting at most 3 sample points). 1.6: Symbolic representation of given events and description of events in symbolic form.	
$\mathbf{2}$	1.7: Illustrative examples. Probability: 2.1: Equally likely outcomes (events), apriori (classical) definition of probability of an event. Equiprobable sample space, simple examples of computation of probability of the events based on Permutations and Combinations. 2.2: Axiomatic definition of probability with reference to a finite and	$\mathbf{1 0}$

	countably infinite sample space. 2.3: Proof of the results: i) $\mathrm{P}(\Phi)=0, \quad$ ii) $\mathrm{P}(\mathrm{Ac})=1-\mathrm{P}(\mathrm{A})$, iii) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ (with proof) and its generalization (Statement only). iv) If $\mathrm{A} \subset \mathrm{B}, \mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{B})$, v) $0 \leq \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{A} \cup B) \leq$ $P(A)+P(B)$. 2.4: Definition of probability in terms of odd ratio. 2.5: Illustrative examples based on results in (2.3) and (2.4) .	
3	Conditional Probability\& Independence of events: 3.1: Definition of conditional probability of an event. 3.2: Multiplication theorem for two events. Examples on conditional probability. 3.3: Partition of sample space. 3.4: Idea of Posteriori probability, Statement and proof of Baye's theorem, examples on Baye's theorem. 3.5: Concept of Independence of two events. 3.6: Proof of the result that if A and B are independent then, i) A and B^{c}, ii) A^{c} and B iii) A^{c} and B^{c} are independent. 3.7: Pairwise and Mutual Independence for three events. 3.8: Elementary examples.	06
4	Univariate Probability Distributions (finite sample space): 4.1: Definition of discrete random variable. 4.2: Probability mass function (p.m.f.) and cumulative distribution function (c.d.f.) of a discrete random variable, Properties of c.d.f. (statements only). 4.3: Probability distribution of function of random variable. 4.4: Median and Mode of a univariate discrete probability distribution. Mathematical Expectation: 4.5: Definition of expectation of a random variable, expectation of a function of a randomvariable. 4.6: Results on expectation, i) $\mathrm{E}(c)=c$, where c is a constant, ii) $\mathrm{E}(a \mathrm{X}+b)=a \mathrm{E}(\mathrm{X})+b$, where a and b are constants. 4.7: Definitions of mean, variance of univariate distributions. Effect of	12

	change of origin and scale on mean and variance. 4.8: Definition of raw, central moments. Pearson's coefficient of skewness, kurtosis. 4.9: Definition of probability generating function (p.g.f.) of a random variable. Effect of change of origin and scale on p.g.f. Definition of mean and variance by using p.g.f.	
4.10: Examples.		

References:

1. Bhat B. R., Srivenkatramana T and Madhava Rao K. S. (1997): Statistics: a Beginner's Text, Vol. II, New Age International (P) Ltd.
2. Edward P. J., Ford J. S. and Lin (1974): Probability for Statistical Decision-Making, Prentice Hall.
3. Goon A. M., Gupta M. K., Das Gupta B. (1999): Fundamentals of Statistics, Vol.II, World Press, Calcutta.
4. Mood A. m., Graybill F. A. and Boes D. C. (1974): Introduction to the Theory of Statistics, McGraw Hill.
5. Hogg R. V. and Crag R. G.: Introduction to Mathematical Statistics Ed.4.
6. Hoel P. G. (1971): Introduction to Mathematical Statistics, Asia Publishing House.
7. Meyer P.L.(1970): Introductory Probability and Statistical Applications, Addision Wesley.
8. Rohatgi V. K. and Saleh A. K. Md. E. (2002): An Introduction to probability and statistics. John wiley \& Sons (Asia)
9. Gupta V.K. \& Kapoor S.C. Fundamentals of Mathematical Statistics.- Sultan \& Chand
10. Mukhopadhyay P. (2006) : Probability. Books and Allied (P) Ltd

Note: 1. In theory examination, the weight age to the numerical problems should not exceed 40%.
2. Students can use scientific calculators in theory examination.

B. Sc. Part - I CBCS Syllabus with effect from June, 2019 STATISTICS - DSC - 1004 B
 Semester: II Part- I
 Descriptive Statistics -II
 Theory: $\mathbf{3 6}$ Hours Credits - 2

Course Outcomes - At the end of this course students will be able to:
CO1. To compute correlation coefficient and its interpretation.
CO 2 . To compute regression coefficients and regression lines.
CO3.Understand the need of vital statistics and concepts of mortality and fertility.
CO4. Know the concept and use of time series.

Unit	Contents	Hours Allotted
1	Correlation: 1.1: Bivariate Random variable (X, Y), Bivariate data, Formation of bivariate frequency distribution 1..2: Definition of Marginal totals, Mean of X, Mean of Y, Variance of X, Variance of Y, Covariance of XY. 1.3: Effect of change of origin and scale on covariance. 1.4: Theoretical examples. 1.5: Concept of correlation between two variables, Types of correlation. 1.6: Scatter diagram, its utility. 1.7: Karl Pearson's coefficient of correlation (r): Definition, Computation for ungroupedand grouped data, Properties : i) $-1 \leq$ $\mathrm{r} \leq 1$, ii) Effect of change of origin andscale.(iii) Interpretation when $r=-1,0,1$. 1.8: Spearman's rank correlation coefficient: Definition, Computation (for with and without ties). Derivation of the formula for without ties and modification of the formula for with ties.	09
2	Regression: 2.1: Concept of regression, Lines of regression, Fitting of lines of regression by the least square method. 2.2: Regression coefficients (bxy, byx) and their geometric interpretations, Properties: i) bxy \times byx $=r 2$, ii) bxy \times byx ≤ 1, iii) $($ bxy + byx $) / 2 \geq r$, iv) Effect of change of origin and scale on regression coefficients, v) the point of intersection of two regression lines. 2.3: Derivation of acute angle between the two lines of regression. 2.4: Coefficient of determination.	09
3	Demography: 2.1 Introduction and need of vital statistics 2.2Mortality rates: Crude death rate (CDR), Specific Death Rate (SDR), Standardized Death Rate (STDR). 2.3Fertility Rates: Crude Birth Rate (CBR), Age Specific Fertility Rate (ASFR), General Fertility Rate (GFR), Total Fertility Rate	10

| | (TFR).
 2.4Reproduction Rate: Gross Reproduction rate (GRR), Net
 Reproduction Rate (NRR). | |
| :---: | :--- | :---: | :---: |
| $\mathbf{4}$ | Time Series: (6 Lectures of $\mathbf{4 8}$ mins)
 1.1: Meaning and need of time series analysis, components of times (i)
 Secular trend (ii) Seasonal Variation (iii) Cyclical Variation (iv)
 Irregular Variation, Additive and Multiplicative model, utility
 of time series.
 Measurement of trend: (i) Moving averages method (ii)
 Progressive average method (iii) Least square method. (iv)
 Measurement of seasonal indices by simple average method. | |

References:

1. Bhat B. R., Srivenkatramana T. and Madhava Rao K. S. (1996): Statistics: A Beginner's Text, Vol. 1, New Age International (P) Ltd.
2. Croxton F. E., Cowden D.J. and Kelin S. (1973): Applied General Statistics, Prentice Hall of India.
3. Goon A.M., Gupta M.K., and Dasgupta B.: Fundamentals of Statistics Vol. I and II, World Press, Calcutta.
4. Gupta S. P. (2002): Statistical Methods, Sultan Chand and Sons, New Delhi.
5. Snedecor G.W. and Cochran W. G. (1967): Statistical Methods, Iowa State University Press.
6. Waiker and Lev.: Elementary Statistical Methods.
7. Kapur,J.N and Gupta,H.C,:Fundamentals of Mathematical Statistics.S.Chand and sons,New Delhi.
8. Gupta V.K. \& Kapoor S.C. Fundamentals of Mathematical Statistics.- Sultan \&Chand

STATISTICS - DSC - 1004 B
 Semester: II Part- II
 Discrete Probability Distributions
 Theory: $\mathbf{3 6}$ Hours Credits - 2

Course Outcomes - At the end of this course students will be able to:
CO1.Apply some univariate standard discrete probability distributions to different situations.
CO 2 . Obtain mathematical expectation of different distributions.
CO3. To learn relation between different discrete distributions.
CO4. Concept of bivariate random variable, probability distributions.

Unit	Contents	Hours Allotted
1	Some Standard Discrete Probability Distributions- I: (finite sample space): 1.1: Idea of one point, two-pointdistributions and their mean and variances. 1.2: Bernoulli Distribution: p.m.f., mean, variance, distribution of sum ofindependent and identically distributed Bernoulli variables. 1.3: Discrete Uniform Distribution: p.m.f., mean and variance.	05
2	Some Standard Discrete Probability Distributions- II: (finite sample space): 2.1: Binomial Distribution: Binomial random variable, p.m.f.with parameters(n, p),Recurrence relation for successive probabilities, Computation of probabilities ofdifferent events, mean and variance, mode, skewness, p.g.f., Additive property ofbinomial variates. Examples. 2.2: Hyper geometric Distribution: p.m.f.with parameters (N, M, n), Computation of probability of different events, Recurrence relation for successive, probabilities, mean and variance of distribution assuming $\mathrm{n} \leq \mathrm{N}-\mathrm{M} \leq \mathrm{M}$, approximation ofHypergeometric to Binomial. Examples.	09
3	Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution(countably infinite sample space): 3.1: Definition of random variable (defined on countably infinite sample space)	10

3.2: Poisson Distribution: Definition of Poisson with parameter λ. Mean, variance, probabilitygenerating function (p.g.f.). Recurrence relation for successive Probabilities, Additive propertyof Poisson distribution. Poisson distribution as a limiting case of Binomialdistribution, examples. 3.3:Geometric Distribution: Definition of Geometric with parameter p. Mean, Variance,distribution function, p.g.f., Lack of memory property, examples. 3.4:Negative Binomial Distribution: Definition of Negative Binomial with parameters (k, p),Geometric distribution is a particular case of Negative Binomial distribution, Mean, Variance, p.g.f., Recurrence relation for successive probabilities, examples.

Books Recommended:

1. Bhat B. R., Srivenkatramana T and Madhava Rao K. S. (1997): Statistics: a Beginner's Text, Vol. II, New Age International (P) Ltd.
2. Edward P. J., Ford J. S. and Lin (1974): Probability for Statistical Decision-Making, Prentice Hall.
3. Goon A. M., Gupta M. K., Das Gupta B. (1999): Fundamentals of Statistics, Vol.II, World Press, Calcutta.
4. Mood A. m., Graybill F. A. and Boes D. C. (1974): Introduction to the Theory of Statistics, McGraw Hill.
5. Hogg R. V. and Crag R. G.: Introduction to Mathematical Statistics Ed.4.
6. Hoel P. G. (1971): Introduction to Mathematical Statistics, Asia Publishing House.
7. Meyer P. L. (1970): Introductory Probability and Statistical Applications, Addision Wesley.
8. Rohatgi V. K. and Saleh A. K. Md. E. (2002): An Introduction to probability and statistics. John wiley \& Sons (Asia)
Note: 1. In theory examination, the weightage to the numerical problems should not exceed 40%.
9. Students can use scientific calculators in theory examination.

Practical-I

Course Outcomes - At the end of this practical paper students will be able to:
CO1. Use various graphical and diagrammatic techniques and interpret.
CO 2 . Compute descriptive statistics and compute correlation coefficient, regression coefficient.
CO3.Fit some univariate discrete probability distributions.
CO4. Compute probabilities of bivariate distributions.
CO5. Compute mortality, fertility rates.

Sr. No.	Title of the Experiment
1.	Graphical representation of frequency distribution.
2.	Measures of Central Tendency I (Ungrouped data)
3.	Measures of Central Tendency II(Grouped data)
4.	Measures of Dispersion I (Ungrouped data)
5.	Measures of Dispersion II (Grouped data)
6.	Moments, Skewness and Kurtosis I (Ungrouped data)
7.	Moments, Skewness and Kurtosis II (Grouped data)
8.	Attributes (Missing frequencies, Consistency),
9.	Attributes (Association and Independence)
10.	Correlation Coefficient \& Spearman's Rank Correlation (Ungrouped data)
11.	Regression (Ungrouped data)
12.	Correlation Coefficient and Regression (Grouped data)
13.	Demography I
14.	Demography II
15.	Time Series Analysis
16.	Bivariate Discrete distribution I
17.	Bivariate Discrete distribution II
18.	Application of Binomial \& Hypergeometric distribution
19.	Fitting Binomial \& Hypergeometric distribution
20.	Fitting and Application of Poisson, Geometric and Negative Binomial distribution

Note:

i. Observation table and/or calculations using statistical formulae should be done by MS-EXCEL and verify by using library functions.
ii. Computer printout is to be attached to the journal.
iii. Student must complete the entire practical to the satisfaction of the teacher concerned.
iv. Student must produce the laboratory journal along with the completion certificate signed by Head of Department, at the time of practical examination.

