

Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College Kolhapur (Autonomous)

Department of Statistics

M. Sc. I-Applied Statistics

Semester I & II

Syllabus to be implemented from Academic year 2023-24 (As per NEP 2020)

Teaching and Evaluation scheme One/Two- Years PG Programme Department/Subject Specific Core or Major (DSC) First Year Semester- I & II (M.Sc. Applied Statistics)

Semester	Course Code	Course Title	No. of Credits
	DSC18STA11	Distribution Theory	04
	DSC18STA12	Estimation Theory	04
-	DSC18STA13	Statistical Computing	02
Ι -	RMD18STA11	Research Methodology	04
-	DSC18STA19	Practical I	04
-	DSE18STA11	1. C Programming	04
-	DSE18STA12	2. Statistical Analysis Using SPSS	04
		Credit	22
	DSC18STA21	Linear model and Regression Analysis	04
-	DSC18STA22	Theory of Testing of Hypothesis	04
-	DSC18STA23	Multivariate Analysis	02
II	DSC18STA29	Practical II	04
-	FPR18STA21	FP/OJT	04
	DSE18STA21	1. DBMS	04
-	DSE18STA22	2. Statistical Analysis Using Minitab	04
		Credits	22

Objectives:

1. The students are expected to understand the principles, concepts, and recent developments in the Statistics.

2. To enhance student sense of enthusiasm for Statistics and to involve them in an intellectually stimulating experience of learning in a supportive environment.

3. The practical course is framed in relevance with the theory courses to improve the understanding of the various concepts in Statistics.

Program Outcomes (PO):

On successful completion of the program students will able to:

- **PO1:** Understand the principles and concepts in the statistical theory at an advanced level which take into account recent advances in the subject.
- **PO2:** Acquire the strong foundation of statistical concepts which will benefit them to become good Statistician.
- **PO3:** Use acquired statistical methodologies and modelling techniques to address real-life problems.
- **PO4:** Gain the knowledge of software which has the wide range of opportunities in the Quality control, Planning and development, IT sector, industries, Business, Government and private sector etc.
- **PO5:** Qualify various National / State level competitive exams like ISS, DSO, CSIR-UGC NET, SET, GATE, MPSC, UPSC, Banking etc.

Program Specific Outcomes (PSO):

On successful completion of the program students will able to:

- **PSO1:** Enhance sense of enthusiasm for Statistics and to involve them in an intellectually stimulating experience of learning in a supportive environment.
- **PSO2:** Handle and analyse small as well as large databases with statistical software and computing environment including C, R, Python, MS-EXCEL.
- **PSO3:** Understand, implement and develop statistical models.
- **PSO4:** Describe complex statistical ideas to non-statisticians and to present the results of their analyses in written, oral forms and can make practical suggestions for improvement.
- **PSO5:** Apply statistical techniques to optimize and monitor real life phenomena related to industry and business analytics etc.

1) Nature of the theory question papers (4 credits):

a) There shall be 7 questions each carrying 16 marks.

- b) Question No.1 is compulsory.
 - i) It consists of 8 multiple choice questions for 1 mark each. (8 marks)
 - ii) short note type questions (attempt any 2 out of 3) (8 marks)
- c) Students have to attempt any 4 questions from question No. 2 to 7.
- d) Question No. 2 to 7 shall contain 2 to 4 sub-questions.

2) Nature of the theory question papers (2 credits):

- a) There shall be 4 questions.
- b) Question No.1 is compulsory.
 - i) It consists of 4 multiple choice questions for 1 mark each. (4 marks)
 - ii) short note type questions (attempt any 1 out of 2) (4 marks)
- c) Question No. 2 to 4 shall be of 16 marks each.
- d) Students have to attempt any 2 questions from question No. 2 to 4.
- e) Question No. 2 to 4 shall contain 2 to 4 sub-questions.

3)Nature of Practical examination: -

Sr. No.	Component	Max marks
1	Practical examination: Examination will be of 3 hour duration. There shall be 8 questions each of 12 marks, of which a student has to attempt any 5 questions.	60
2	Day-to-day practical performance and journal	20
3	Viva: Viva will be based on all practicals	20
Total		100

4) Each of the following courses have the same question paper in all examinations of M.Sc. Statistics and M.Sc. Applied Statistics.

Semester I	Semester II
Distribution Theory	Linear model and Regression Analysis
Estimation Theory	Theory of Testing of Hypothesis
Statistical Computing	Multivariate Analysis
Research Methodology	

M.Sc., I Applied Statistics (Sem I) DSC18STA11: DISTRIBUTION THEORY

Course Outcomes: At the end of the course students will be able to:

CO1: Recognize and learn concept of mixture of distribution and their decomposition.

CO2: Execute transformation of univariate random variables and different moment inequalities.

CO3: Describe the concept of central and non-central distributions.

CO4: Learn the concept of order statistics.

Unit and Credit	DSC18STA11: DISTRIBUTION THEORY	No. of hours perunit / credits
Unit I	Review of Random experiment and its sample space, events, random variables, discrete random variables, continuous random variables. Cumulative distribution function (CDF), properties of CDF, computation of probabilities of events using CDF, quantiles, absolutely continuous and discrete distributions, mixtures of probability distributions, decomposition of mixture CDF into discrete and continuous CDFs, expectation and variance of mixture distributions. Transformations of univariate random variables, probability integral transformation	15
Unit II	Concepts of location, scale and shape parameters of distributions with examples. Symmetric distributions and their properties. Moment inequalities (with proof): Basic, Holder, Markov, Minkowski, Jensen, Tchebysheff and their applications, Random vectors, joint distributions, Independence, variance-covariance matrix, joint MGF. Conditional expectation and variances, Transformations of bivariate random variables, Convolutions, compound distributions.	15
Unit III	Bivariate Normal distribution, Multivariate normal distribution: two definitions and their equivalence, singular and nonsingular normal distribution, characteristic function, moments, marginal and conditional distributions. Maximum likelihood estimators of the parameters of the multivariate normal distribution and their sampling distributions. Marshall-Olkin bivariate exponential distribution, Bivariate Poisson distribution.	15
Unit IV	Sampling distributions of statistics from univariate normal random samples: central and non-central chi-square, t and F distributions. Distributions of linear and quadratic forms involving normal random variables, Fisher Cochran and related theorems: only statements and applications. Order Statistics: Distribution of an order statistics, joint distributions of two order statistics, distribution of spacings, normalized spacings with illustration to exponential case, distribution of sample median and sample range.	15

1) Rohatagi V. K. & Saleh A. K. Md. E. (2001): Introduction to Probability Theory and Mathematical Statistics- John Wiley and sons Inc.

2) Johnson N. L. &Kotz. S. (1996): Distributions in Statistics Vol-I, II and III, JohnWiley and Sons New york.

3) S. Kotz, N. Balakrishnan, N. L. Johnson: Continuous Multivariate Distributions - Second Edition, Wiley.

4) Casella & Berger (2002): Statistical Inference - Duxbury advanced series.IInd edition 5)C. R. Rao (1995): Linear Statistical Inference and Its Applications (Wiley Eastern) Second Edition

6.) Dasgupta, A. (2010): Fundamentals of Probability: A First Course (Springer)

DSC18STA12: ESTIMATION THEORY

Course Outcomes: At the end of the course students will be able to:

CO1: Describe the notion of a parametric models, point estimation of the parameters of those models.

CO2: Construct the sufficient statistic, minimal sufficient statistic, m.l.e., moment estimator of the parameter.

CO3: Discuss the concept of MVUE, MVBUE, UMVUE.

CO4: Describe the concept of Bayesian inference and their real life applications.

Unit and Credit	DSC18STA12: ESTIMATION THEORY	No. of hoursper unit / credits
Unit I	Sufficiency principle, factorization theorem, minimal sufficiency, minimal sufficient partition, construction of minimal sufficient statistics, minimal sufficient statistic for exponential family, power series family, curved exponential family, Pitman family. Completeness, bounded completeness, ancillary statistics, Basu's theorem and applications.	15
Unit II	Problem of point estimation, unbiased estimators, minimum variance unbiased estimator, Rao- Blackwell theorem and Lehmann-Scheffe theorem and their uses. Necessary and sufficient condition for MVUE and their applications. Fisher information and information matrix, Cramer- Rao inequality, Chapmann-Robinson bounds, Bhattacharya bounds, their applications.	15
Unit III	Method of maximum likelihood (MLE) and small sample properties of MLE, method of scoring and application to estimation in multinomial distribution. MLE in non-regular families. Other methods of estimation: method of moments, minimum Chi square. U-Statistics: one and two sample; U- Statistics theorem for one sample and two sample (statements only).	15
Unit IV	Consistency of an estimator, weak and strong consistency, joint and Marginal consistency, invariance property under continuous transformations, methods of Constructing	15

consistent estimators, asymptotic relative efficiency. Consistent and Asymptotic Normal (CAN) Estimators:
Definition of CAN estimator for real and vector valued
parameters, invariance of CAN property under non-
vanishing differentiable transformation.
Methods of constructing CAN estimators: Method of
Moments, method of percentiles, comparison
of CAN estimators. CAN and BAN estimators in one
parameter exponential family of distributions, BAN
estimators

- 1. V. K. Rohatgi, and A. K. MD. E. Saleh (2015): Introduction to Probability Theory and MathematicalStatistics, John Wiley & sons, 3rd Edition.
- 2. E. L. Lehmann (1983): Theory of Point Estimation, John Wiley & sons.
- 3. C. R. Rao (1973): Linear Statistical Inference and its Applications, wiley, 2nd Edition.
- 4. B. K. Kale, and K. Muralidharan (2015): Parametric Inference: An Introduction, Alpha Science InternationalLtd.
- 5. P. Mukhopadhyay (2015): Mathematical Statistics, Books and Allied (p)Ltd.
- 6.E. J. Dudewicz and S. N. Mishra (1988): Modern Mathematical Statistics, John Wiley and Sons.
- 7. Casella and Berger (2002): Statistical Inference, Duxbury advanced series, IInd edition.

DSC18STA13: STATISTICAL COMPUTING

Course Outcomes: At the end of the course students will be able to:

CO1: Construct formulas, including the use of built-in functions and analysis tool pack.

- CO2: Learn Lookup functions, pivot table and pivot chart
- CO3: Develop the fundamentals of statistical analysis in R environment.

CO4: Learn different control statements and test procedures.

Unit and Credit	DSC18STA13: STATISTICAL COMPUTING	No. of hoursper unit / credits
Unit I	MSEXCEL: Introduction to MSEXCEL. Cell formatting, conditional formatting, Data manipulation using EXCEL: sort and filter, find and replace, text to columns, remove duplicate, data validation, consolidate, what-if-analysis. Working with Multiple Worksheets and Workbooks. Built- in mathematical and statistical functions for obtaining descriptive statistic, computing PMF/PDF, CDF and quantiles of the well-known distributions, rand and randbetween function, Logical functions: if, and, or, not. Lookup functions: hlookup, vlookup, Formula Errors, Creating and Working with Charts, Database functions, Text functions, Date and time functions, Excel add-ins: analysis tool pack, Pivot tables and charts.	15

Unit II	R-software: Introduction to R, data types and objects, operators, data input, data import and export, built in functions for descriptive statistics, random sampling and computation of pdf, cdf and quantiles of well-known distribution. Strings and Dates in R. apply family of functions. Saving work in R. Matrix algebra, graphical procedures, frequencies and cross tabulation, built in functions: lm, t.test, prop.test, wilcox.test, ks.test, var.test, chisq.test, aov. Control statements. Programming, user defined functions, Rpackages. R-studio.	15
---------	--	----

1.Gardener, M. (2012). Beginning R: the statistical programming language. John Wiley & Sons.

2. Held, B., Moriarty, B., & Richardson, T. (2019). Microsoft Excel Functions and Formulas with Excel 2019/Office 365. Mercury Learning and Information.

3. Herkenhoff, L., & Fogli, J. (2013). Applied statistics for business and management using Microsoft Excel. New York: Springer.

4. Purohit, S. G., Gore, S. D., & Deshmukh, S. R. (2015). Statistics using R. Alpha Science International.

DSE18STA11: C PROGRAMMING

Course Outcomes: At the end of the course students will be able to:

CO1: Explain the Basic Terminology Used in Computer Programming

CO2: Implement different Operations on arrays, functions, pointers, structures, unions and files.

CO3: Write Compile and Debug Programs in C Language.

CO4: Analyze and Solve Complex and Real Life Problems by Developing Application Programs using C Programming Language.

Unit and Credit	DSE18STA11: C PROGRAMMING	No. of hoursper unit/credits
Unit I	Overview of Computer programming, Algorithms: The concept and features of the algorithm, ways of writing the algorithm, writing step by step procedure, Problem redefinition, Flow charts: various symbols used to develop a flow chart, Advantages and drawbacks of flowcharts, concept of Tracing and Testing of Algorithm/flowchart. Pseudo code generation. Fundamentals of C programming: Features of C language, structure of C program, comments, header files, data types, constants and variables, operators, expressions, evaluation of expressions, I/O functions	15

Unit II	Control Structures: Decision control structures and Loop control structures. Structured programming, Recursive algorithms, Examples, illustrating structured program development methodology and use of block structured algorithmic language to solve specific problem. Syntax and semantics, documentation and debugging of a program.	15
Unit III	Arrays– Basic concepts, one-dimensional arrays, two – dimensional arrays, multidimensional arrays, C programming examples Pointers – Introduction (Basic Concepts), pointers to pointers, Pointer Applications, Arrays and Pointers, Pointer Arithmetic, memory allocation functions, array of pointers, pointers to void, pointers to functions, command –line arguments, Introduction to structures and unions., Dynamic Memory Allocations using MALLOC, CALLOC and REALLOC.	15
Unit IV	Structures and Union: Defining and Initializing Structure, Array within Structure, Array of Structure, Nesting of Structure, Pointer to Structure, Passing structure and its pointer to Functions; Unions: Introduction to Unions and its Utilities. Files Handing: Opening and closing file in C; Create, Read and Write data to a file; Modes of Files, Operations on file using C Library Functions; Working with Command Line Arguments. Program Debugging and types of errors.	15

1. Balagurusamy, E. (2016). Programming In Ansi C.

2. Horowitz & Sahani (1998). Fundamentals of Computer Algorithms. Galgotia Publications,

3. Knuth D. E. (1997). *The Art of Computer Programming*. Volume 1: Fundamental - Narosa Publishing House.

- 4. Kruse R. L. (2006): Data structures and program design C, 2nd edition-PEARSON.
- 5. Mastering C, Venugopal, Second edition, TMH, 2006

6. Shukla R. K. (2015). Analysis and Design of Algorithms, A beginners approach. .Wiley.

7. Programming in C, Schaum Series, 3rd edition, BPB Publication, Byron S. Gottfried

DSE18STA12: Statistical Analysis Using SPSS

Course Outcomes: At the end of the course students will be able to:

CO1: Enter and manipulate data efficiently.

CO2: Learn diagrammatical and graphical representation of data.

CO3: Compute descriptive statistics and probabilities.

CO4: Model and test hypothesis using SPSS.

Unit and Credit	DSE18STA22: Statistical Analysis Using SPSS	No. of hoursper unit / credits
Unit I	Introduction.	15
	Sample Files. Opening a Data File. ,Running an Analysis,	
	Creating Charts, Reading Data, Basic Structure of IBM SPSS	
	Statistics Data Files, Reading IBM SPSS Statistics Data Files.	
	Reading Excel Data.	
	Reading Data from a Database, Reading Data from a Text File.	
	Using the Data Editor.	
	Entering Numeric Data, Entering String Data, Defining Data,	
	Adding Variable Labels ,Changing Variable Type and	
	Format, Adding Value Labels, Handling Missing Data	
	, Missing Values for a Numeric Variable, Missing Values for a	
	String Variable. Statistics for Individual Variables.	
	Level of Measurement, Summary Measures for Categorical	
	Data ,Charts for Categorical Data ,Summary Measures for	
	Scale Variables, Histograms for Scale Variables	
	Creating and editing charts ,Chart creation basics	
	,Using the Chart Builder gallery ,Defining variables and	
	statistics ,Adding text ,Creating the chart	
Unit II		15
	Working with Output.	
	Using the Viewer, Using the Pivot Table Editor, Accessing	
	Output Definitions, Pivoting Tables, Creating and Displaying Layers, Editing Tables	
	Hiding Rows and Columns, Changing Data Display Formats,	
	Table Looks ,Using Predefined Formats Customizing Table	
	Look Styles ,Changing the Default Table Formats.	
	Customizing the Initial Display Settings. ,Displaying	
	Variable and Value Labels	
	Using Results in Other Applications, Pasting Results as	
	Word Tables, Pasting Results as Tex,	
	Exporting Results to Microsoft Word, PowerPoint, and Excel Files,	
	Exporting Results to PDF, Exporting Results to HTML. . Working with Syntax. Pasting	
	Syntax. Editing Syntax, Opening and Running a Syntax File,	
	Using Breakpoints. Modifying Data Values.	
	Creating a Categorical Variable from a Scale Variable,	
	Computing New Variables, Using Functions in Expressions.	
	,Using Conditional Expressions,	
	Working with Dates and Times, Calculating the Length of Time	
	between Two Dates, Adding a Duration to a Date	
	Sorting and Selecting Data.	
	Sorting Data, Split-File Processing,	

	Sorting Cases for Split-File Processing ,Turning Split-File Processing On and Off, Selecting Subsets of Cases. ,Selecting Cases Based on Conditional Expressions Selecting a Random Sample, Selecting a Time Range or Case Range, Treatment of Unselected Cases, Case Selection Status.	
Unit III	Parametric Test:	15
	One sample t test, paired t test, unpaired t test, analysis of	
	variance, two way analysis of variance.	
Unit IV	Nonparametric:	15
	Chi-square test, spearman's rank correlation coefficient,	
	sign test, Wilcoxon-signed rank test, Mann-Whitney U test,	
	Krushkal-Wallis test.	

- 1. George A. Morgan, Nancy L. Leech, Gene W. Gloeckner, Karen C. Barrett, IBM SPSS for Introductory Statistics, Six edition, Routledge {Taylar and Francis Group)
- 2. George A. Morgan, Nancy L. Leech, Gene W. Gloeckner, Karen C. Barrett IBM, SPSS for Introductory Statistics, fifth edition, Routledge {Taylar and Francis Group)
- 3. Jesus Salcedo, Keith McCormick, SPSS Statistics, Fourth edition, dummies
- 4. Anil Kumar Misra, A Hand book on SPSS, second edition, Himalaya Publishing House
- 5.

RMD18STA11: Research Methodology

Course Outcomes: At the end of the course students will be able to:

CO1: Understand the concept of research, research process, and research ethics.

CO2: Understand and apply various sampling methods for data collection and estimate the parameters.

CO3: Understand the concept of simulation and able to simulate real life processes

CO4: Apply numerical methods to solve systems of linear equations and definite integrals.

Unit and Credit	RMD18STA11: Research Methodology	No. of hoursper unit / credits
Unit I	Meaning of research, objectives of research, motivation in research, types of research, research approaches, significance of research, research methods vs. methodology, research and Scientific method, research process, criteria of good research, defining research problem, research design, Research Ethics, publication of research, Plagiarism, Intellectual property rights, Patents and its filing procedures.	15
Unit II	Sampling techniques: review of simple random sampling stratified random sampling, systematic random sampling, cluster sampling, two phase sampling, ratio and regression method of estimation. Probability proportional to size sampling: Cumulative total method, Lahiri's method, Hansen-Horwitz estimator and its properties, Horwitz-	15

	Thompson estimator, Des Raj estimators for a general	
	sample size. Non-sampling errors, techniques for handling	
	non-response: Hansen-Horwitz and Demings model for	
	the effect of call-backs. Randomized response techniques,	
	dichotomous population, Warners model, MLE in	
	Warners model, unrelated question model.	
Unit III		15
	Concept and need of simulation, random number generator, true random number and pseudo random number generators,	15
	requisites of a good random number generator. Tests for	
	randomness. Congruential method of generating uniform	
	random numbers. Algorithms for generating random	
	numbers from well-known univariate discrete and	
	continuous distributions, generating random vectors from	
	multinomial, bivariate normal, and bivariate exponential	
	distributions, generating random numbers from mixture of	
	distributions (related results without proofs). Acceptance-	
	Rejection Technique. Use of random numbers to evaluate	
	integrals, to study the systems involving random variables,	
	to estimate event probabilities and to find expected value of	
	random variables. Use of random numbers for performance	
	evaluation of estimators and statistical tests.	
Unit IV	Resampling methods: Bootstrap methods, estimation of bias	15
	and standard errors, estimation of sampling distribution,	
	confidence intervals. Jackknife method: estimation of bias	
	and standard errors, bias reduction method. Numerical	
	methods for solution to system of linear equations: Jacobi	
	and Gauss-Seidel methods with convergence analysis.	
	Numerical methods for finding roots of nonlinear equation:	
	Newton-Raphson method, bisection method; Newton-	
	Raphson for system of non- linear equations. Numerical	
	integration: quadrature formula, trapezoidal rule and	
	Simpson's rules for single integral.	

1. Atkinson, K. E. (1989). An introduction to numerical analysis, John Wiley and Sons.

- 2. Chaudhuri, A., & Stenger, H. (2005). Survey sampling: theory and methods. CRC Press.
- 3. Cochran, W. G. (1977). Sampling techniques. John Wiley & Sons.
- 4. Kennedy, W. J., & Gentle, J. E. (2021). Statistical computing. Routledge.
- 5. Kothari, C. R. (2004). *Research methodology: Methods and techniques*. New Age International.
- 6. Morgan, B. J. (1984). Elements of simulation (Vol. 4). CRC Press.
- 7. Mukhopadhyay, P. (2008). *Theory and methods of survey sampling*. PHI Learning Pvt. Ltd..
- 8. Ross, S. M. (2022). Simulation. Academic Press.
- 9. Singh, D., & Chaudhary, F. S. (1986). *Theory and analysis of sample survey designs*. John Wiley & Sons.

10. Sukhatme P. V., Sukhatme S. & Ashok C (1984). *Sampling Theory of surveys and applications*. Iowa university press and Indian society of agricultural statistics, New Delhi.

Practical	Practical Name
Number	
1	Sketching of pdf and CDF for Discrete distribution
2	Sketching of pdf and CDF for Continuous distribution
3	Mixture of distribution
4	Applications of Bivariate Normal distribution & Multivariate Normal
	distribution.
5	Sufficient, minimal sufficient, and complete sufficient statistics
6	UMVUE and lower bunds for variances of unbiased estimators
7	Maximum likelihood and method of moments estimation
8	Method of Scoring and method of minimum chi-square estimation
9	Construction of Consistent/CAN & BAN Estimators.
10	Confidence interval based on CAN &BAN.
11	Practical on MSEXCEL
12	Practical on R- Software
13	Sampling Techniques I
14	Sampling Techniques IIK
15	Applications of Simulation techniques
16	Numerical Methods and Resampling Techniques
17	2 to 3 practicals on elective Paper

DSC18STA19: PRACTICAL -I

(Each practical should consist of problems to be solved using at least two of the following software: EXCEL/ R/python)

Semester II

DSC18STA21: Linear Models and Regression Analysis.

Course Outcomes: At the end of the course students will be able to:

CO1: Understand General linear model, Gauss Markov theorem, variances and covariance's of BLUEs.

CO2: Understand and apply multiple regression models in real life situations.

CO3: Understand concept of multicollinearity and non-linear regression.

CO4: Understand concept of Robust regression, Logistic regression and Poisson regression.

Unit and Credit	DSC18STA21: Linear Models and Regression Analysis.	No. of hours per unit / credits
Unit I	General linear model: definition, assumptions, concept of estimability, least squares estimation, BLUE, estimation space, error space, Guass Markov theorem, variances and covariances of BLUEs, Distribution of quadratic forms for normal variables: related theorems (without proof), Tests of hypotheses in general linear models. Description of the ANOVA and linear regression models as the particular cases of the general linear model.	15
Unit II	Multiple regression model, Least squares estimate (LSE), Properties of LSE, Hypothesis testing, confidence and prediction intervals, General linear hypothesis testing. Dummy variables and their use in regression analysis. Model adequacy checking. Transformations to correct model inadequacies: VST and Box-Cox power transformation.	15
Unit III	Multicollinearity: Consequences, detection and remedies, ridge regression. Autocorrelation: sources, consequences, detection (Durbin-Watson test) and remedies. Parameter estimation using Cochrane-Orcutt method. Variable Selection Procedures: Rsquare, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Robust Regression: need for robust regression, M-estimators, properties of robust estimators: breakdown and efficiency. Asymptotic distribution of M- estimator (Statement only).	15
Unit IV	Generalized linear models: concept of generalized linear model, Link function, ML estimation, large sample tests about parameters, goodness of fit, analysis of deviance. Residual analysis, types of residuals: raw, Pearson, deviance, Anscombe, quantile; residual plots. Variable selection: AIC and BIC. Logistic regression: logit, probit and cloglog models for dichotomous data, ML estimation, Odds ratio and its interpretation, hypothesis tests about model parameters. Hosmer-Lemeshow test, multilevel	15

logistic	regression,	Logistic	regression	for	Nominal	
response	. Poisson reg	ression.				

1. Birkes, D., & Dodge, Y. (2011). Alternative methods of regression. John Wiley & Sons.

2. Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman and Hall.

3. Draper, N. R., & Smith, H. (1998). Applied regression analysis. John Wiley & Sons.

4. Huber, P.J. and Ronchetti, E.M (2011) Robust Statistics, Wiley, 2nd Edition.

5. Kutner, M. H., Nachtsheim, C. J., Neter, J., & Wasserman, W. (2004). Applied linear regression models. New York: McGraw-Hill/Irwin.

6. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. 5th Ed. John Wiley & Sons.

7. Seber, G.A., Wild, C.J. (2003). Non linear Regression, Wiley.

8. Weisberg, S. (1985). Applied Linear Regression, John Wiley & Sons. New York.

DSC18STA22: THEORY OF TESTING OF HYPOTHESIS

Course Outcomes: At the end of the course students will be able to:

- CO1: Formulate null and alternative hypotheses, compute probabilities of types of error, MP tests and MLR property.
- CO2: Understand UMP and UMPU test with their applications.
- CO3: Construct asymptotic confidence interval of a parameter and its relation with testing of hypothesis problem.
- CO4: Execute small, large sample size tests and non-parametric tests in real life problems.

Unit and Credit	DSC18STA22: THEORY OF TESTING OF HYPOTHESIS	No. of hours per unit / credits
Unit I	Problem of testing of Hypothesis, Simple and composite hypotheses. Randomized and non- randomized tests, Most powerful test, Neyman-Pearson Lemma and its applications. Determination of minimum sample size to achieve the desired strengths.Monotone likelihood ratio property, UMP test, power function of a test, existence of UMP.Tests for one-sided alternatives.Concept of p- value.	15
Unit II	UMP tests for two sided alternatives examples, their existence and non- existence. Generalized Neyman Pearson lemma, unbiased test, UMPU test and their existence in the case of exponential families (Statements of the theorems only). Similar tests, test with Neyman structure.	15
Unit III	Problem of confidence intervals, relation with testing of hypotheses problem, shortest length confidence intervals, UMA and UMAU confidence intervals. Asymptotic	15

	Confidence Intervals based on CAN estimators, Variance stabilizing transformations (VST), confidence interval based on VST, Asymptotic Confidence regions.	
Unit IV	Likelihood ratio test and its application to standard distribution. Goodness of fit tests based on Chi-square distribution and application to contingency tables. Spearman's Rank Correlation Test; Kendall's Rank Correlation Test; Kruskal-Wallis Test; Fridman's Two-way analysis of variance by ranks. Wald test, Rao's Score test, Bartlett's test for homogeneity of variances, Consistent test	15

- 1. V. K. Rohatgi, and A. K. MD. E. Saleh (2015): Introduction to Probability Theory and Mathematical Statistics, John Wiley & sons, 3rd Edition.
- 2. B. K. Kale, and K. Muralidharan (2015), Parametric Inference: An Introduction, Alpha Science InternationalLtd.
- 3. E. J. Dudewicz and S. N. Mishra (1988): Modern Mathematical Statistics, John Wiley and Sons.
- 4. E. L. Lehmann (1983): Theory of Point Estimation, John Wiley & sons.
- 5. T. S. Ferguson, Mathematical Statistics (1967): A decision theoretical approach, Academic press.
- 7. S. Zacks (1971): Theory of Statistical Inference, John Wileyand Sons, New York.
- 8. R. H. Randles (1979): and D. A. Wolfe, Introduction to theory of nonparametric Statistics, Wiley.
- 9. J. D. Gibbons and S. Chakraborti(2010): Nonparametric Statistical Inference, CRC Press, Fifth Edition.

DSC18STA23: Multivariate Analysis

Course Outcomes: At the end of the course students will be able to:

- CO1: Review of multivariate normal distribution and their real life applications.
- CO2: Understand Wishart distribution, Hotelling T2 and Mahalanobis D2 statistic.
- CO3: Implement dimension reduction techniques using software on real life problems.

CO4: Demonstrate knowledge of the basic ideas behind discriminant and clustering analysis techniques with applications.

Unit and Credit	DSC18STA23: Multivariate Analysis	No. of hours per unit / credits
Unit I	Review of Multivariate Normal distribution Hotelling's T^2 Statistic and its null distribution. Applications of T^2 statistics and its relationship with Mahalanobis' D^2 statistic. Confidence region for the mean vector, Wishart matrix and its distribution, properties of Wishart distribution, distribution of generalized variance.	15
Unit II	Discrimination and classification. Fisher's discriminant function and likelihood ratio procedure, minimum ECM rule, Rao's U statistics and its use in tests associated with	15

discriminant function, classification with three populations.	
Cluster analysis, Heirarchical methods: Single, Complete,	
average linkage method and non-heirarchical clustering	
method-k means clustering. Canonical correlation analysis,	
Introduction to principal component analysis and related	
results, Introduction to factor analysis and estimation.	

1.Kshirsagar A. M. (1972): Multivariate Analysis. Marcel-Dekker.

2. Johnson, R.A. and Wichern. D.W (2002): Applied multivariate Analysis. 5thAd.Prentice – Hall.

3. Anderson T. W. (1984): An introduction to Multivariate statistical Analysis2nd Ed. John Wiely.

4. Morrison D.F. (1976): Multivariate Statistical Methods McGraw-Hill.

DSE18STA21: DBMS

Course Outcomes: At the end of the course students will be able to:

CO1: Basic knowledge in database systems.

CO2: Enable the students to be well placed in leading business organizations anywhere in the world.

CO3: To acquaint the students with the use of current relational database systems.

CO4: Ability to build a solid foundation for advanced studies in database area.

Unit and Credit	DSE18STA21: DBMS	No. of hoursper unit/credits
Unit I	Introduction to Databases and Data Models	15
	Concept of database system, purpose of database system,	
	view of data, different sources of databases, relational	
	databases, database architecture, importance of data models,	
	basic building blocks, business rules, the evolution of data	
	models, data abstraction, database users and administrators.	
Unit II	Introduction to Data Models and Normalization	15
	Database design and ER Model: Overview, ER-Model,	
	Constraints, ER-Diagrams, ERD issues, weak entity sets,	
	Codd's rules, relational schema, introduction to UML	
	relational database model: logical view of data, keys, and	
	integrity rules. Relational Database design: features of	
	good relational database design, atomic domain and	
	normalization (1NF, 2NF, 3NF, BCNF).	
Unit III	Introduction to SQL	15
	Constraints: Concept and types of constrains. Views:	
	Introduction to views, data independence, security, updates	
	on views, comparison between tables and views.	
	SQL: Basics of SQL, DDL, DML, DCL, TCL, DQL	
	commands. Defining constraints: primary key, foreign	

	 key, unique, not null, check, Operators in SQL: Arithmetic operator, Comparison operator, Logical operator, Special operators. Functions: aggregate functions, built-in functions, numeric, date, string functions, set operations, sub-queries, correlated sub- queries, Clauses: use of group by, having, order by. Join: join and its types, exist, any, all, view and its types joined relations. Triggers. 	
Unit IV	Transaction management: ACID properties, serializability and concurrency control, lock based concurrency control (2PL, Deadlocks), time stamping methods, optimistic methods, database recovery management, data dictionary. NoSQL: Overview, and history of NoSQL databases, definition of the four types of NoSQL database, introduction to Big Data.	15

1.Abraham Silderschutz, H. Korth and S. Sudarshan: "Database systems concepts ",6th Edition, McGraw Hill Education

2. Peter Rob, Carlos Coronel: Database Systems: Design, Implementation, & Management.

3. C.J.Date, Longman, Introduction To Database Systems, Pearson Education

4. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, McGraw-Hill

DSE18STA22: Statistical Analysis Using Minitab

Course Outcomes: At the end of the course students will be able to:

CO1: Enter and manipulate data efficiently.

CO2: Learn diagrammatical and graphical representation of data.

CO3: Compute descriptive statistics and probabilities.

CO4: Model and test hypothesis using SPSS.

Unit and Credit	DSE18STA22: Statistical Analysis Using	No. of hoursper
	Minitab	unit / credits
Unit I	Introduction	15
	To Minitab How to Use this Guide, Assumptions, Register	
	as a MINITAB User, Global Support, Customer Support,	
	MINITAB on the Internet, About the Documentation,	
	Basic Statistics	
	Basic Statistics Overview, Descriptive Statistics Available	
	for Display or Storage, Display Descriptive Statistics, Store	
	Descriptive Statistics, One-Sample Z-Test and Confidence	
	Interval, One-Sample t-Test and Confidence Interval, two-	
	Sample t-Test and Confidence Interval, Paired t-Test and	
	Confidence Interval, Test and Confidence Interval of a	
	Proportion, Test and Confidence Interval of Two	

	Descentions Test for Errol Marianese Completion	
	Proportions, Test for Equal Variances, Correlation,	
	Covariance, Normality Test.	
	Regression	
	Regression Overview, Regression, Stepwise Regression, Best	
	Subsets Regression, Fitted Line Plot, Residual Plots, Logistic	
	Regression Overview, Binary Logistic Regression, Ordinal	
TT . *4 TT	Logistic Regression, Nominal Logistic Regression.	15
Unit II	Analysis of Variance	15
	Analysis of Variance Overview, One-Way Analysis of	
	Variance, Two-Way Analysis of Variance, Analysis of	
	Means, Overview of Balanced ANOVA and GLM,	
	Balanced ANOVA, General Linear Model, Fully Nested	
	ANOVA, Balanced MANOVA, General MANOVA,	
	Test for Equal Variances, Interval Plot for Mean, Main	
	Effects Plot, Interactions Plot.	
	Multivariate Analysis	
	Multivariate Analysis Overview, Principal Components	
	Analysis, Discriminant Analysis,	
	Nonparametric	
	Nonparametric Overview, One-Sample Sign Test, One-	
	Sample Wilcoxon Test, Two-Sample Mann-Whitney Test,	
	Kruskal -Wallis Test for a One-Way Design,	
	Mood's Median Test for a One-Way Design, Friedman	
	Test for a Randomized Block Design,	
	Runs Test, Pairwise Averages, Pairwise Differences, Pairwise	
TT *4 TTT	Slopes.	15
Unit III	Tables Tables	15
	Tables Overview ,Arrangement of Input Data, Cross	
	Tabulation, Tally Unique Values	
	,Chi-Square Test for Association ,Chi-Square Goodness-	
	of-Fit Test, Simple Correspondence Analysis Time Series	
	Time Series Overview, Trend Analysis,	
	Decomposition, Moving Average, Single Exponential	
	Smoothing, Double Exponential Smoothing, Winters'	
	Method, Differences, Lag, Autocorrelation, Partial	
	Autocorrelation, Cross Correlation, ARIMA.	
	Exploratory Data Analysis	
	Exploratory Data Analysis Overview, Letter Values, Median	
	Polish,Resistant Line,Resistant Smooth,Rootogram.	
	Power and Sample Size Power and Sample Size Overview,Z-Test and t-Tests,Tests of	
	Proportions, One-Way Analysis Of Variance, Two-Level	
	Factorial and Plackett-Burman Designs	
Unit IV	Quality Planning Tools	15
	Quality Planning Tools Overview, Run Chart, Pareto Chart,	
	Cause-and-Effect Diagram, Multi- Vari Chart ,Symmetry	
	Plot ,Variables Control Charts,	
	Variables Control Charts Overview, Defining Tests for	
	Special Causes ,Box-Cox Transformation for Non-Normal	
	Data, Control Charts for Data in Subgroups, X bar Chart	
	Data in Subgroups, A bal Chart	

,R Chart, S Chart, X bar and R Chart, X bar and S Chart,
Moving Range Chart, Control Charts Using Subgroup
Combinations ,EWMA Chart ,Moving Average Chart,
CUSUM Chart Control Charts for Short Runs
Attributes Control Charts Overview ,P Chart1,NP Chart,C
Chart,U Chart
Options for Attributes Control Charts
Process Capability
Process Capability Overview, Capability Analysis (Normal
Distribution) ,Capability Analysis (Between/Within)
,Capability Analysis (Weibull Distribution),Capability Six
pack (Normal Distribution), Capability Six pack
(Between/Within) ,Capability Six pack (Weibull
Distribution) ,Capability Analysis (Binomial) ,Capability
Analysis (Poisson)

1. Robert B. Miller, Minitab Handbook for Business and Economics (Duxbury series in

statistics & decision sciences) Second edition.PWS

Ruth K. Meyer, David Krueger A Minitab Guide to statistics, Second edition, Pearson
 Rehman M. Khan Problem Solving and Data Analysis Using Minitab, Wiley

4. McLaughlin, Kathleen; Wakefield, Dorothy, Introduction to Data Analysis Using Minitab for Windows, An – Softcover ,Third Edition Pearson.

DSCPR12: PRACTICAL -II

Course Objective: Students should to understand and implement theory in real life problems.

Practical Number	Practical Name
1	Linear Estimation: Estimation and Hypothesis testing
2	Multiple linear regression
3	Variable selection, Multicollinearity and Autocorrelation
4	Logistic Regression & Poisson Regression
5	MP, UMP, and UMPU Tests
6	Likelihood ratio tests
7	Confidence Intervals
8	Non-parametric Tests
9	Exploratory data analysis.
10	Application of Hotelling's T ² statistics
11	Discriminant Analysis
12	Principle component analysis and Factor Analysis.
13	At least two practical's on elective paper

(Each practical should consist of problems to be solved using at least two of the following software: EXCEL/ R/python)

ANSM HEAD DEPARTMENT OF STATISTICS VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)