Academic year 2018-2019 Semester I Department -Statistics Subject - Statistics Title -DESCRIPTIVE STATISTICS -I & ELEMENTARY PROBABITITY THEORY #### Section I- Descriptive Statistics I Name of teacher – Ms. Pattanshetti R. N. | Mo | onth: June-Jul | y | Module/Unit | Sub-units planned | |----------------|------------------|-------------|--|--| | Lectures
12 | Practicals 16 | Total
28 | Unit-1 Introduction to
Statistics & Measures of
Central Tendency | Meaning of primary and secondary data, Basis concept of population and sampling methods. Concept of central tendency. | | Month-Au | | | | | | Lectures 9 | Practicals 20 | Total
29 | Unit -1 Measures of
Central Tendency | A.M., G.M., H.M., and its properties Partition values: Quartile, deciles and percentiles. Comparison between averages | | | | | Unit-2 Measures of Dispersion | Concept of dispersion, Absolute and relative measure of dispersion. | | Month-Se | ptember | | | | | Lectures 7 | Practicals
8 | Total
15 | Unit-2 Measures of
Dispersion | Definition of variance and standard deviation
with its properties Coefficient of variation | | | | | Unit-3 Moments,
Skewness & Kurtosis | Moments: Raw and central moments. Relation between raw and central moments. Skewness and kurtosis (concept and types). | | Month: O | ctober-Noven | nber | | | | Lectures 7 | Practicals
12 | Total
19 | Unit-4 Theory of
Attributes | Concept of attributes and some definitions Concept of Consistency Concept of Independence and Association of two attributes. Definition and interpretation of Yule's coefficient of association (Q) and Coefficient of colligation (Y). Relation between Q and Y. Examples | Name and Signature of teacher ABSTRANCE TO A 2 Ms. Pattanshetti R.N ESTD JUNE * 1964 * Ms. Pattanshetti R. N. Academic year 2018-2019 Semester I Department -Statistics Subject - Statistics Title -DESCRIPTIVE STATISTICS -I & ELEMENTARY PROBABITITY THEORY #### Section II- Elementary Probability Theory Name of teacher - Pawar V. V. | Mo | nth: June-Ju | - | Module/Unit | Sub-units planned | |----------------|------------------|-------------|--|--| | Lectures 20 | Practicals
20 | Total
40 | Unit-1 Sample space and Events | Deterministic and non-deterministic experiments Definitions: Sample space, Event, Types of events Algebra of events | | Month-Au | igust | | | | | Lectures 11 | Practicals
16 | Total
27 | Unit -1 Sample space and Events Unit-2 Probability | Definition of Power set. Symbolic representation of given events and Illustrative examples. Apriori definition of probability, Probability model | | | | | | Axiomatic definition of probability Illustrative examples | | Month-Sep | ptember | | | | | Lectures
12 | Practicals
16 | Total
28 | Unit-2 Probability | Some theorems on probability Definition of probability in terms of odd ratio. | | | | | Unit-3 Conditional Probability& Independence of events | Definition of conditional probability
,Multiplication theorem of probability Baye's theorem, examples on conditional
probability and Baye's theorem. Independence of two events, Pairwise and
Mutual Independence for three events.
Elementary examples. | | Month: Oc | tober-Noven | nber | | | | Lectures
14 | Practicals
16 | Total
30 | Unit-4 Univariate Probability Distributions (finite sample space): | Discrete random variable, p.m.f. and c.d.f. Properties of c.d.f. Probability distribution of function of random variable. Median and Mode | Name and Signature of teacher (Ms. Pawaz V. V.) Department of Stotlatler THE THE WAR THE THE THE PARTY. PERCHONORS - Mattansbutte. Ms. Pattanshetti R. N. Head Department of Statistics Wekanand College, Kolhapur (Autonomous) Academic year 2018 -2019 Semester III Department -Statistics Subject - Statistics Title -Probability Distributions I and Statistical Methods I #### Section II - Statistical Methods I Name of teacher - Pattanshetti R.N. | Mo | onth: June-Jul | y | Module/Unit | Sub-units planned | |-------------------------|------------------|-------------|---------------------------------------|--| | Lectures 20 | Practicals 20 | Total
40 | Unit-1 Time Series | Meaning ,need and utility components of time series Methods of measurement of trend Measurement of seasonal indices | | Month-Au | igust | | | | | Lectures
12 | Practicals
16 | Total
28 | Unit-2 Statistical Quality
Control | Meaning and purpose of S.Q.C., Process control, Product control, Shewhart's control chart for
Attributes | | | | | Unit-3 Demography | Introduction and need of vital
statistics Mortality rates, Fertility Rates
and Reproduction Rates | | Month-Sep | ptember | | | | | Lectures 13 | Practicals
16 | Total
29 | Unit-4 Index Number | Meaning and utility of index
numbers. Types of index numbers. | | Month: October-November | | | | | | Lectures
14 | Practicals
16 | Total
30 | Unit-4 Index Number | Laspeyre's, Paasche's and Fisher's index numbers Tests of index numbers. Cost of living index number | Name and Signature of teacher Ms. Pattanshetti R.N ESTD JUNE 1964 * Ms. Pattanshetti R. N. Head Department of Statistics Vivekanand College, Kolhapu: (Autonomous) Mattensbeth riond - sparement of Statistics - sparement Copage, Kolins, in (*unanorious) Academic year 2018-2019 Semester III Department -Statistics Subject - Statistics Title -Probability Distributions I and Statistical Methods I ### Section I- Probability Distributions I Name of teacher - Pawar V. V. | Mo | nth: June-Jul | у | Module/Unit | Sub-units planned | |----------------------------|-------------------------|-------------|--|--| | Lectures 19 | Practicals 16 | Total
35 | Unit-1 Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution. | Definition of random variable Poisson Distribution Poisson distribution as a limiting case of Binomial distribution, examples. | | Month-Au
Lectures
12 | Practicals 20 | Total
32 | Unit-1 Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution. Unit-2 Continuous Univariate Distributions | Geometric Distribution Lack of memory property Negative Binomial Distribution Examples. Definition of the continuous sample space, Continuous random variable (r.v.), p.d.f, c.d.f. and its properties Expectation of r.v., expectation of function of r.v., mean, median, mode, quartiles, variance, harmonic mean, raw and central moments, skewness and kurtosis. | | Month-Sep | otember | | | internation battern and a second | | Lectures
10 | Practicals
8 | Total
18 | Unit-2 Continuous Univariate Distributions | Moments generating function Cumulant generating function Examples. | | 21 | set l | | Unit-3 Continuous Bivariate Distributions | Definition of bivariate continuous random variable, p.d.f, c.d.f., Conditional distribution and independence of random variables. Expectation of function of r.v.s, covariance, correlation coefficient, conditional expectation. | | Month: Oc | Month: October-November | | × 7 17 | | | | Practicals
16 | Total
30 | Unit-4 Transformations of continuous random variable | Transformations of univariate continuous random variable and continuous bivariate random variables Methods of transformation | Name and Signature of teacher Ms. Pawas V.V. Ms. Pattanshetti R. N. Head Academic year 2018 -2019 Semester V Department -Statistics Subject - Statistics Title - Operations Research # Paper No. XII Operations Research Name of teacher - Pattanshetti R.N. | M | teacher – Pa
onth: June-Ji | ıly | Module/Unit | | |---------------|-------------------------------|-------------|--|---| | Lectures | Practicals | Total | Unit-1Linear | Sub-units planned | | 20 | 20 | 40 | programming | Concept and formulation of problem as LPP Some definitions Solution of L.P.P.: Graphical Method, Simplex Method | | Month-Au | gust | 1 | 1 6 | III. Big-M method | | Lectures | Practicals | T. 1 | | Big-ivi method | | 13 | 20 | Total
33 | Unit-1Linear programming Unit-2 Transportation and Assignment Problems | some definitions 2. Methods of obtaining IBFS of Transportation problem (T. P.) 3. NWCR, Matrix minima and VAM | | Month-Sept | owale and | | | 4. MODI Method for optimal solution | | | | | | solution | | 1 1 0 | | Total
20 | Unit-2 Transportation and Assignment Problems | Assignment Problem(A.P.) A.P. as a particular case of T.P. Hungerian method to solve(A.P.) Sequencing Problem: Some definitions Procedure of processing n jobs on (a) two machines, (b)three machines and (c) m machines. | | | | | Unit-3 Decision Theory | definitions 2. Type of decision making environments. 3. Decision making under uncertainty | | Ionth: Octobe | er-November | | | 4. Decision making under risk | | Pra 20 | acticals To | otal [| Jnit-4 Simulation
Cechniques | Meaning of simulation, Methods of generating random numbers Techniques of generating random numbers for discrete and | | | Hansbelle
ature of teach | | | continuous distributions | Ms. pattanshetti P.N " safe, a refugit to a maxic - Period Period **ESTD** JUNE 1964 Ms. Pattanshetti R. N. Academic year 2018 -2019 Semester V Department -Statistics Subject - Statistics Title -Design of Experiments Paper No. XI Design of Experiments | Name of teach | T Indee | T | Module/Unit | Sub-units planned | |-----------------------------------|---------------------------|-------------|--|---| | | actionic | Total
68 | Unit-1 Simple Design of Experiment I | Basic terms in design of experiments, Principles of design of experiments Completely Randomized Design (CRD) | | Month-Augus
Lectures P
12 2 | racticals | Total
32 | Unit-2 Simple Design of
Experiment II | Randomized Block Design (RBD) Latin Square Design (LSD) Missing plot technique for RBD and LSD Identification of real life situations where CRD, RBD and LSD are used. | | Dooman | ember
Practicals
25 | Total
36 | Unit-3 Efficiency of design and ANOCOVA | Efficiency of design Analysis of Covariance (ANOCOVA) with one concomitant variable: Purpose of ANOCOVA Practical situations Estimation of parameters Preparation of analysis of covariance table. | | Month: Oc
Lectures
14 | Practicals
20 | | Unit-4 Factorial Experiment | 1. Concept of factorial experiments 2. Definitions of main effect and interaction effects 3. ANOVA for 2 ² and 2 factorial experiments arrange in RBD. 4. Total confounding and Partic Confounding 5. Construction of layout in tot confounding and partic confounding in 2 ³ factorial experiment. | Name and Signature of teacher Ms. Pawar V. V scanson College, Kolhapper (sucmonotus) Ms. Pattanshetti R. N. **Head** Academic year 2018 -2019 Semester V Department -Statistics Subject - Statistics Title -Probability Distributions # Paper No. IX Probability Distributions I Practical B. Sc. II and III Name of teacher - Barale M.S. | Propticals | Tr. · · | Module/Unit | Sub-units planned | |------------------|---|---|--| | 45 | Total
65 | Unit-1 Univariat Continuous Probabilit Distributions | e 1. Laplace (Double Exponential y Distribution 2. Lognormal Distribution | | | | | 3. Cauchy Distribution | | Practicals
40 | Total
51 | Unit -1 Univariate Continuous Probability Distributions Unit-2 Univariate and Multivariate Probability Distributions | | | ember | | | particular cases | | Practicals
40 | Total
52 | Unit-2 Univariate and Multivariate Probability Distributions Unit-3 Truncated Distributions | Multinomial distribution Trinomial distribution as particular case of multinomial distribution. Truncated distribution as conditional distribution, truncation to the right, left and on both sides. Truncated binomial distribution Truncated Poisson distribution P(m) Truncated normal distribution N(μ, σ²) Truncated exponential | | er-November | | | distribution | | Practicals
45 | Total
59 | Unit-4 Bivariate Normal
Distribution | p. d. f. of a bivariate normal distribution, Marginal and conditional distributions, Conditional expectation and conditional variance | | | ember Practicals 40 er-November Practicals | Practicals 40 Total 51 cmber Practicals 40 Total 52 er-November Practicals Total 52 | Practicals 45 Total 65 Unit-1 Continuous Distributions Unit -1 Univariate Probability Distributions Unit-2 Univariate and Multivariate Probability Distributions Unit-2 Univariate and Multivariate Probability Distributions Ember Practicals 40 Unit-2 Univariate and Multivariate Probability Distributions Unit-3 Truncated Distributions Unit-3 Truncated Distributions Unit-3 Truncated Distributions | Name and Signature of teacher Ms. pattanshetti R.N Ms. Pattanshetti R. N. Academic year 2018 -2019 Subject - Statistics Department -Statistics Semester V Title -Statistical Inference I Paper No. X Statistical Inference I Practical B. Sc. II and III | _ | | M.D | | | |-------------------------|------------------------------------|-------------|--------------------------------------|---| | | eacher - Loha | | Module/Unit | Sub-units planned | | Mor
Lectures
19 | nth: June-July
Practicals
40 | Total
59 | Unit-1 Point Estimation | Concept and definition of Point estimation Definition of an estimator (statistic) & its S.E., Properties of estimator Unbiased estimators and results regarding unbiased estimators | | Month-Au | gust | | | 1 P. Letino officiancy | | Lectures
11 | Practicals
40 | Total
51 | Unit-1 Point Estimation | Relative efficiency Minimum Variance Unbiased Estimator and Uniformly Minimum Variance Unbiased Estimator Consistency | | | | | Unit-2 Likelihood and
Sufficiency | Definition of likelihood function Sufficiency Pitman Koopman form and sufficient statistic | | Month-Se | eptember | | | 1. Fisher information function | | Lectures
12 | Practicals
45 | Total
57 | Unit-2 Likelihood and
Sufficiency | Concept of minimal sufficient statistic Illustrative examples. | | | | | Unit-3 Cramer's Rao
Inequality | Cramer Rao inequality. Minimum Variance Bound Unbiased
Estimator (MVBUE) of φ (θ). Some results related to MVBUE | | Month: October-November | | | | | | Lectures 14 | | | Unit-4 Method of
Estimation | Method of maximum likelihood Invariance property of MLE, relation between MLE and sufficient statistic. Method of moments Method of minimum chi-square | Mutanshelti Name and Signature of teacher Description of the contribute in Insertinged isigaño) (agallo) (diseste (Automoralis) Department of Statistics Vivekanand College, Kolhaput (Autonomous) Academic year 2018 -2019 Odd Semester Department -Statistics Subject - Statistics Title -DESCRIPTIVE STATISTICS -II & DISCRETE PROBABITITY DISTRIBUTIONS # Practicals B. Sc. I, Π and Π Name of teacher - Nerlekar.S. S | I not | onth: June- | | Module/Unit | Sub: 1- set sections | |------------------------------------|-----------------|-------------|---|--| | Lectures | Practical
81 | | Practical I Practical II Practical II | Sub-units planned 1. Graphical representation of frequency distribution. 2. Measures of Central Tendency (Ungrouped and Grouped data) 1. Fitting of Discrete Uniform distribution. 2. Fitting of Binomial distribution. 1. Analysis of CRD and RBD. 2. Analysis of Latin Square Design (LSD) 1. L.P.P. by simplex method I (Slack variable) | | M | onth: Augus | | | 2. L.P.P. by simplex method II (Big I method) | | Lectures | Practicals | | Duo eti. 17 | | | dices, so
Property
Cathorine | | Total
81 | Practical I Practical II Practical – VI | Measures of Dispersion (Ungrouped and Grouped data) Moments, Skewness and Kurtosis (Ungrouped and Grouped data) Fitting of Hypergeometric distribution. Fitting of Poisson distribution. Missing Plot Technique for RBI and LSD with one missing observation. Efficiency of i) RBD over CRD and ii) LSD over CRD and RBD. Transformation problem-I. Transformation problem-II. | | onth: Sept | | | | (Degeneracy) | | ctures F | Practicals | Total
54 | Practical I | Univariate Probability Distribution Probability - I | | | | | Practical II | Fitting of Geometric distribution. Fitting of Negative Binomial distribution. Analysis of Covariance in CRD. Analysis of Covariance in RBD. Assignment problem. Sequencing Problem. | | Month: October- November | | | - 1 Y | 1. Probability – II | |--------------------------|-------------------|-------------|----------------|--| | Lectures | Practicals
116 | icals Total | Practical I | Attributes Correlation Coefficient & Spearman's Rank Correlation (Ungrouped data) | | | | | Practical II | Model sampling from Discrete Uniform distribution. Model sampling from Binomial distribution. Model sampling from Hypergeometric distribution. | | | | | Practical - VI | Analysis of 22 and 23 Factorial Experiment. Total Confounding. Decision Theory. Simulation I (Discrete distribution) Simulation II (Continuous distribution) | Name and Signature of teacher Ms. Pattanshetti R. N. Academic year 2018 -2019 Semester III Department -Statistics Subject - Statistics Course - CC - 1051 C Title - Business Statistics I #### Section I- Business Statistics I Name of teacher - Lohar M.B. | Mo | Month: June-July | | Module/Unit | Sub-units planned | |-------------------------|------------------|-------------|--|---| | Lectures
26 | Practicals | Total
26 | Unit-1 Introduction to
Statistics &Sampling
Techniques | Meaning and scope of statistics Graphical representation, types of data. Sampling Techniques | | Month-Au | | | | G | | Lectures 16 | Practicals | Total
16 | Unit-2 Measures of
Central Tendency | Concept of central tendency
Mean median and mode, Partition values Empirical relation Examples | | Month-Sep | ptember | | | | | Lectures
12 | Practicals | Total
12 | Unit-3 Measures of Dispersion | Concept of dispersion and it types Coefficient of variation Examples. | | | | | Unit-4 Analysis of
Bivariate Data | Correlation: Definition, Type of correlation Methods of studying correlation Illustrative examples. | | Month: October-November | | | | | | Lectures
16 | Practicals | Total
16 | Unit-4 Analysis of
Bivariate Data | Concept of regression Lines of regression Regression coefficients and it Properties Illustrative Examples. | Name and Signature of teacher Ms. Lohar M. B Ms. Pawar V. V. Academic year 2018 -2019 Semester III Department -Statistics Subject - Statistics Course - CC - 1051 C Title - Business Statistics I #### Section I- Business Statistics I Name of teacher - Bhosale A. B. | | eacher – Bho | | | | |-------------------------|---------------|-------------|--|--| | Mo | nth: June-Jul | у | Module/Unit | Sub-units planned | | Lectures 26 | Practicals | Total
26 | Unit-1 Introduction to
Statistics &Sampling
Techniques | Meaning and scope of statistics Graphical representation, types of data. Sampling Techniques | | Month-Au | gust | | | | | Lectures 16 | Practicals | Total
16 | Unit-2 Measures of
Central Tendency | Concept of central tendency, Mean median and mode, Partition values Empirical relation Examples | | Month-Sep | otember | | | | | Lectures
14 | Practicals | Total
14 | Unit-3 Measures of Dispersion Unit-4 Analysis of | Concept of dispersion and its types Coefficient of variation Examples. Correlation: Definition, Types of | | | | | Bivariate Data | correlation 2. Methods of studying correlation 3. Illustrative examples. | | Month: October-November | | | | | | Lectures
18 | Practicals | Total
18 | Unit-4 Analysis of
Bivariate Data | Concept of regression Lines of regression Regression coefficients and its
Properties Illustrative Examples. | Name and Signature of teacher (Bhosale A.B.) ESTD JUNE 1964 Ms. Partment of Stat Academic year 2018-2019 Semester IV Department -Statistics Subject - Statistics Title – Business Statistics – II #### Section II Business Statistics - II Name of teacher – Lohar M.B. | Mo | Month: December | | Module/Unit | Sub-units planned | |------------------|-----------------|-------------|--|---| | Lectures
16 | Practicals | Total
16 | Unit-1 Probability and probability distributions | 1.Basic concepts in probability 2.Binomial distribution: Properties and examples | | Month: Ja | nuary | | | | | Lectures
18 | Practicals | Total
18 | Unit-1 Probability and probability distributions | Poisson distribution: Properties
and examples | | Month: Fe | bruary | | | | | Lectures
16 | Practicals | Total
16 | Unit-1 Probability and probability distributions Unit-2 Time Series | 1.Normal distribution: Properties and examples 2.Definition, uses and components of time series 3.Methods of determination of trend | | | | | Ont-2 Time Bones | 4. Numerical examples | | Month: M | arch | | | 11. (4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1 | | Lectures
14 | Practicals | Total
14 | Unit-3 Index Number | Meaning and construction of index numbers Types of index numbers Simple and weighted index number. Laspeyre's, Paasche's and Fisher's index numbers. Numerical examples | | Month: April-May | | | | | | Lectures
14 | Practicals | Total
14 | Unit-4 Statistical Quality
Control | 1.Introduction to SQC, Process control, Product control 2.Control charts for variables 3.Control charts for Attributes 4.Examples | Name and Signature of teacher Ms. Lohar M.B Ms. Pawar V. V. Academic year 2018 -2019 Semester II and IV Department -Statistics Subject - Statistics Title -DESCRIPTIVE STATISTICS -II & DISCRETE PROBABITITY DISTRIBUTIONS #### Section I- Descriptive Statistics II Practicals B. Sc. I, and II Name of teacher - Nerlekar.S. S | Mo | Month: December | | Module/Unit | Sub-units planned | |------------------|------------------|-------------|---|--| | Lectures
13 | Practicals
72 | Total
85 | Unit-1 Correlation | Bivariate Random variable Correlation, Types of correlation. Scatter diagram, its utility. | | M | onth: January | | | | | Lectures
12 | Practicals
84 | Total
96 | Unit-1 Correlation | Karl Pearson's coefficient of
correlation Spearman's rank correlation
coefficient | | Month: Fe | ebruary | | | | | Lectures
12 | Practicals
76 | Total
88 | Unit -2 Regression Unit-3 Multiple Linear | Concept of regression Equations of regression lines Regression coefficients and its properties. Concept of multiple linear | | | | | Regression & Multiple and Partial Correlation | regressions. 2. Fitting of regression plane | | Month: M | arch | | | | | Lectures
12 | Practicals
64 | Total
76 | Unit-3 Multiple and
Partial Correlation | Multiple and partial correlation coefficients and its properties Examples | | Month: April-May | | | | | | Lectures
10 | Practicals
84 | Total
94 | Unit-4 Time Series | Meaning ,need and utility components of time series Methods of measurement of trend Measurement of seasonal indices | Name and Signature of teacher Ms. Nerlekar S.s * KOLLHADUR - 416003 Ms. Pawar V. V. Head Department of Statistics Vivakanand College, Kolhapur (Autonomous) Academic year 2018 -2019 Semester II Department -Statistics Subject - Statistics Title -DESCRIPTIVE STATISTICS -II & DISCRETE PROBABITITY DISTRIBUTIONS ## Section II- Discrete Probability Distributions Name of teacher - Pawar V. V. | Month: | Month: December-January | | Module/Unit | Sub-units planned | |----------------|-------------------------|-------------|--|---| | Lectures
21 | Practicals
48 | Total
69 | Unit-1 Some Standard Discrete Probability Distributions- I | One point and two point distributions Bernoulli Distribution Discrete Uniform Distribution | | Month: Fe | ebruary | | | | | Lectures 12 | Practicals
32 | Total
44 | Unit -2 Some Standard Discrete Probability Distributions- II | Binomial Distribution Hyper geometric Distribution. Binomial approximation to
Hypergeometric distribution | | | | | Unit-3 Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution | Poisson Distribution Poisson distribution as a limiting case of Binomial distribution, Examples. | | Month: M | arch | | | | | Lectures
12 | Practicals
40 | Total
52 | Unit-3 Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution | Geometric Distribution: Negative Binomial Distribution | | Month: Ap | oril-May | | | | | Lectures
10 | Practicals
24 | Total
34 | Unit-4 Bivariate Discrete
Probability Distributions | Definition of bivariate discrete random variable ,p.m.f., and c.d.f., Properties of c.d.f. Mathematical Expectation: Definition and it. Conditional mean and variance, covariance and correlation coefficient. | Name and Signature of teacher estation, apendo Suspendia (Baromanagana) ESTD JUNE 1964 * Ms. Payan V. V. Academic year 2018 -2019 Semester IV Department -Statistics Subject - Statistics Title -Probability Distributions II and Statistical Methods II #### Section I- Probability Distributions II Name of teacher - Pawar V. V. | Mor | Month: December | | Module/Unit | Sub-units planned | |------------------|------------------|-------------|---|---| | Lectures
12 | Practicals
16 | Total
28 | Unit-1 Uniform and 1. Un
Exponential Distribution | iform distribution | | | onth: January | | Daponential Distribution | | | 13 | 16 | 29 | Unit-1 Uniform and 1. Exp
Exponential Distribution | ponential distribution | | Month: Fe | bruary | | | | | Lectures
12 | Practicals
16 | Total
28 | | mma distribution
ta distribution of 1 st kind | | | | | Unit-2 Gamma and Beta 1. Bet Distributions | ta distribution of second kind | | Month: M | arch | | | | | Lectures
12 | Practicals 20 | Total
32 | 2. Pro
3. Nu | rmal distribution with parameters μ σ², Standard normal distribution operties of Normal distribution merical examples i-Square distribution | | | | | Distributions 2. Stu | ident's t- distribution | | Month: April-May | | | | | | Lectures
10 | Practicals
12 | Total
32 | Ont : Enert Samping | edecor's F distribution. er relation between t, F and χ^2 | Name and Signature of teacher equal of the fraction of a floor of 100 become Ms. Pairing adv. Department of Statistics Vivakanand College, Kolhapur (Autonomous) Academic year 2018 -2019 Semester IV Department -Statistics Subject - Statistics Title -- Probability Distributions II and Statistical Methods II #### Section II - Statistical Methods II Name of teacher - Bhosale A. B. | | enthe Decemb | Journ II. D | 76 11 77 1 | | |------------------|------------------|-------------|------------------------------------|---| | | onth: Decemb | | Module/Unit | Sub-units planned | | Lectures
13 | Practicals 32 | Total
45 | Unit-1 Chebychev's
Inequality | Chebycheve's inequality for discrete and continuous distributions. Examples | | M | Ionth: Januar | у | | | | 13 | 40 | 53 | Unit-2 Reliability Theory | Binary Systems Examples | | Month: Fo | ebruary | | | | | Lectures
11 | Practicals 32 | Total
43 | Unit-2 Reliability Theory | 3. Reliability of binary System4. Ageing Properties | | Month: M | arch | | | | | Lectures
12 | Practicals
28 | Total
40 | Unit-3 Testing of
Hypothesis I | Definitions: Population, sample, hypothesis and types of hypothesis, One and two tailed test Type I and type II errors, level of significance, p-value, Critical region, power of test. Large Sample Tests. | | Month: April-May | | | | • | | Lectures
12 | Practicals
28 | Total
40 | Unit-4 Testing of
Hypothesis II | Exact/Small sample tests (based on t, chi-square and F distribution) | Name and Signature of teache (Bhosale A.B.) ESTD GOLLAND COLLEGE STD G Ms. Pawar V. V. Head Academic year 2018 -2019 Semester VI Department -Statistics Subject - Statistics Title -Probability Theory ## Paper No. XIII Probability Theory Name of teacher - Bhosale A.B. | | nth: Decembe | | Module/Unit | Sub-units planned | |------------------|------------------|-------------|---|---| | Lectures 12 | Practicals 20 | Total
32 | Unit-1 Order Statistics | Order statistics: definition, derivation of distribution function and density function of the ith order statistic. Derivation of joint p. d. f. of i -th and j-th order statistics | | Month: Ja | nuary | | | | | Lectures
12 | Practicals
50 | Total
62 | Unit-1 Order Statistics | Distribution of the sample range
and sample median when n is odd. Examples and Problems. | | Month-Fel | | | | | | Lectures
11 | Practicals
40 | Total
51 | Unit-2 Convergence and
Limit Theorem | 1. Convergence: Definition and modes of convergence 2. WLLN i. i. d. random variables 3. Central Limit Theorem: Statement and proof 4. Simple examples based on Bernoulli, binomial, Poisson and chi-square distribution. | | Month- M | arch | 1 | | | | Lectures
12 | Practicals
35 | Total
47 | Unit-3 Finite Markov
Chains | Definition, examples and classification of stochastic process Markov chain: Definition and examples of Markov chain, Classification of states, simple problems. Stationary probability distribution, applications. Continuous Markov chain: Pure birth process, Poisson process, birth and death process. | | Month: April-May | | | | | | Lectures
12 | Practicals 35 | Total
47 | Unit-4 Queing Theory | 1.Basic concepts in queuing theory 2.Distribution of arrival, inter arrival time, departure and service time, 3.Types of queuing models. | Name and Signature of teacher (Bhosale A.B.) JUNE 1964 COLHAPUR - A160 Ms. Phoed V. Academic year 2018 -2019 Semester II, IV and VI Department -Statistics Subject - Statistics Title -Statistical Inference II ### Paper No. XIV Statistical Inference II Practicals B. Sc. I, II and III Name of teacher - Lohar M. B. | Mo | onth: Decemb | her | Module/Unit | | |--------------------|------------------|-------------|---------------------------------|---| | Lectures | Practicals | Total | Unit-1 Interval Estimation | Sub-units planned | | 12 | 67 | 79 | Offit-1 Interval Estimation | Notion of interval estimation
and some definitions Pivotal quantity and its use in | | | | | | obtaining confidence intervals | | Month, In | | | | and bounds. | | Month: Ja Lectures | | Im. | | | | 13 | Practicals
77 | Total
90 | Unit-1 Interval Estimation | Interval estimation for the different cases of | | Month: Fe | ebruary | | | normal distribution | | Lectures 11 | Practicals
67 | Total
78 | Unit-2 Parametric Test | Statistical hypothesis, problems of testing of hypothesis. Most Powerful (MP) test. Neyman - Pearson (NP) lemma Likelihood Ratio Test | | Month: Ma | | T | | | | Lectures 12 | Practicals
64 | Total
76 | Unit-3 Sequential Test | General theory of sequential analysis and its comparison with fixed sample procedure. Wald's SPRT of strength (α, β) Illustrations for standard distributions Graphical and tabular procedure for carrying SPRT | | Month: Ap | ril-May | | | procedure for earlying SFR1 | | Lectures 13 | Practicals 61 | Total
74 | Unit-4 Non – Parametric
Test | Notion of non-parametric statistical inference (test) and its comparison with parametric statistical inference. Concept of distribution free statistic. Some non-parametric tests: Run test, Sign test, Wilcoxon's signed rank test, Mann-Whitney U –test, Median test, and Kolmogorov Smirnov test | MBOG12 Name and Signature of teacher Ms. M.B. Lohar Ms. Fload V. Department of Statistics Autonomous) Academic year 2018 -2019 Semester VI Department -Statistics Subject - Statistics Title -Sampling Theory #### Paper No. XV Sampling Theory Name of teacher - Pawar V. V. | | eacher – Paw | | 3 | Sub-units planned | | |----------------|------------------|-------------|---|--|--| | | nth: Decembe | | Module/Unit | | | | Lectures
13 | Practicals
25 | Total
38 | Unit-1 Basic Terminology
and Simple Random
Sampling | 1.Basic Terminology 2.Simple random sampling, SRSWR, SRSWOR | | | Month: Jan | | | | | | | Lectures
13 | Practicals
15 | Total
28 | Unit-1 Basic Terminology
and Simple Random
Sampling | SRS for attributes Determination of the sample size | | | Month: Fe | | | | | | | Lectures
12 | Practicals 20 | Total
32 | Unit-2 Stratified Sampling | 1. Stratified random sampling 2. Determination of the sample size under proportional and Neyman allocation 3. Comparison amongst SRSWOR, stratification with proportional allocation and stratification with optimum allocation. | | | Month: M | | | | 0 1: D 1 1: | | | Lectures
12 | Practicals 25 | Total 37 | Unit-3 Other Sampling
Methods | 1. Systematic Sampling: Real life situations, technique of drawing a sample 2. Comparison of SRS, stratified and systematic sampling when population is in linear trend 3. Circular Systematic Sampling. 4. Cluster Sampling, Two Stage and Multi Stage Sampling, 5. Systematic sampling as a particular case of cluster sampling. 6. Comparison of cluster sampling and SRSWOR. | | | Month: A | oril-May | | | | | | Lectures 10 | Practicals 10 | Total
20 | Unit-4 Sampling Methods
using Auxiliary variables | Ratio Method: Concept of auxiliary variable and its use in estimation Situations where Ratio method is appropriate. Relative efficiency of ratio estimators with that of SRSWOR Regression Method: Situations where is appropriate. | | | Britis. | i w Joe | 77,1112 | 4 | 5. Relative efficiency of regression estimators over SRSWOR | | Name and Signature of teacher (Mg. Pawar V. V.) Ms. Pawar ad. Academic year 2018 -2019 Subject - Statistics Semester VI Department -Statistics Title -Quality Management and Data Mining Paper No. XVI Quality Management and Data Mining Practicals B. Sc. II and III Name of teacher - Barale M. S. | Mo | Month: December | | Module/Unit | Sub-units planned | |------------------|------------------|-------------|--|--| | Lectures
12 | Practicals 56 | Total
68 | Unit-1 Quality Tools | Meaning and dimensions of quality Seven magnificent tools of quality | | Month: Ja | inuary | | | - quanty | | Lectures 13 | Practicals
69 | Total
82 | Unit-1 Quality Tools
Unit-2 Process Control | Deming's PDCA cycle and its applications. CUSUM chart, tabular form | | Month: Fe | | | | | | Lectures 11 | Practicals
60 | Total
71 | Unit-2 Process Control | Moving average and exponentially weighted moving average charts. Six-sigma methodology, DMAIC cycle and case studies | | Month: M | arch | | | The tributed of the state th | | Lectures 11 | Practicals 63 | Total
74 | Unit-3 Product Control | Sampling Inspection plans for attribute inspection: Concept of AQL, LTPD, Consumer's risk, and producer's risk, AOQ, AOQL, OC, ASN and ATI. Single and double sampling plans | | Month: April-May | | | | 2. Strigte and double sampling plans | | Lectures
13 | Practicals
56 | Total
69 | Unit-4 Data Mining | Data preparation for knowledge discovery CRISP and SEEMA methods Supervised and unsupervised learning techniques | ers Baraly Name and Signature of teacher Mr. Barale M.s Ms. Pawar V. V. Academic year 2018-2019 Semester IV Department -Statistics Subject - Statistics Title – Business Statistics – II #### Section II Business Statistics – II Name of teacher – Bhosale A. B. | Mo | nth: Decembe | er | Module/Unit | Sub-units planned | |------------------|--------------|-------------|--|---| | Lectures
28 | Practicals | Total
28 | Unit-1 Probability and probability distributions | 1.Basic concepts in probability2.Binomial distribution: Properties and examples | | Month: Ja | nuary | | | | | Lectures 38 | Practicals | Total
38 | Unit-1 Probability and probability distributions | Poisson distribution: Properties
and examples | | Month: Fe | bruary | | | | | Lectures 30 | Practicals | Total
30 | Unit-1 Probability and probability distributions | 1.Normal distribution: Properties and examples 2.Definition, uses and components of time series | | | | | Unit-2 Time Series | Methods of determination of trend Numerical examples | | Month: M | arch | | | | | Lectures 28 | Practicals | Total
28 | Unit-3 Index Number | Meaning and construction of index numbers Types of index numbers Simple and weighted index number. Laspeyre's, Paasche's and Fisher's index numbers. Numerical examples | | Month: April-May | | | | | | Lectures 34 | Practicals | Total
34 | Unit-4 Statistical Quality
Control | 1.Introduction to SQC, Process control, Product control 2.Control charts for variables 3.Control charts for Attributes 4.Examples | Name and Signature of teacher (Bhosale A.B.) Ms. Pawhy X